Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Ульянов С. С., Ульянова О. В., Зайцев С. С., Салтыков Ю. В., Ульянов А. С., Федорова В. А. Интерференция GB-спеклов в молекулярной дискриминации бактериальных патогенов: использование метода s-LASCA на модели Chlamydia psittaci // Известия Саратовского университета. Новая серия. Серия: Физика. 2021. Т. 21, вып. 4. С. 315-328. DOI: 10.18500/1817-3020-2021-21-4-315-328, EDN: QTABPN

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
30.11.2021
Полный текст в формате PDF(Ru):
(загрузок: 235)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
577.32
EDN: 
QTABPN

Интерференция GB-спеклов в молекулярной дискриминации бактериальных патогенов: использование метода s-LASCA на модели Chlamydia psittaci

Авторы: 
Ульянов Сергей Сергеевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Ульянова Онега Владимировна, Федеральный исследовательский центр вирусологии и микробиологии, филиал в Саратове
Зайцев Сергей Сергеевич, Федеральный исследовательский центр вирусологии и микробиологии, филиал в Саратове
Салтыков Юрий Владимирович, Саратовский государственный аграрный университет имени Н. И. Вавилова
Ульянов Александр Сергеевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Федорова Валентина Анатольевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Продемонстрировано, как виртуальные оптические спеклы (GB-спеклы) могут быть сформированы из нуклеотидных последовательностей семи генов домашнего хозяйства Chlamydia psittaci. Изучены специфические особенности формирования интерференционных картин при суперпозиции как исходных GB-спеклов, так и GB-спеклов, прошедших обработку методом анализа контраста лазерных спеклов (s-LASCA). Показано, что контраст интерферирующих GB-спеклов может быть использован для выявления полиморфизма у нуклеотидных последовательностей бактериальных патогенов, используемых для мультилокусного типирования.

Благодарности: 
Работа выполнена при поддержке Российского научного фонда, проект № 17-16-01099 (продление).
Список источников: 
  1. Briers J., Webster J. S. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow // Journal of Biomedical Optics. 1996. Vol. 1, № 2. P. 174–179. https://doi.org/10.1117/12.231359.
  2. Li P. Ni S., Zhang L., Zeng S., Luo Q. Imaging cerebral blood flow through the intact rat scull with temporal laser speckle imaging // Optics Letters. 2006. Vol. 31. P. 1824–1826. https://doi.org/10.1364/OL.31.001824.
  3. Sini M., Linsely J., Sini M. Analysis of cerebral blood flow imaging by regis-tered laser speckle contrast analysis (rLASCA) // Proceedings of 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN 2011). P. 207–212. https://doi.org/10.1109/ICSCCN.2011.6024545
  4. Ickinger C., Lambrecht V., Tikly M., Vanhaecke A., Cutolo M., Smith V. Laser speckle contrast analysis is a reliable measure of digital blood perfusion in Black Africans with systemic sclerosis // Clinical and Experimental Rheumatology. 2021. Vol. 131, № 4. P. 119–123.
  5. Aleksiev T., Ivanova Z., Dobrev H., Atanasov N. Application of a novel finger temperature device in the assessment of subjects with Raynaud’s phenomenon // Skin Research Technology. 2021. P. 1–6. https://doi.org/10.1111/srt.13070
  6. Unal-Cevik I., Orhan D., Acar-Ozen NP., MamakEkinci E. B. Small Fiber Functionality in Patients with Diabetic Neuropathic Pain // Pain Medicine. 2021. Vol. 22, № 2. https://doi.org/10.1093/pm/pnab150
  7. Gigante A., Villa A., Rosato E. Laser speckle contrast analysis predicts major vascular complications and mortality of patients with systemic sclerosis // Rheumatology (Oxford). 2021. Vol. 60, № 4. P. 1850–1857. https://doi.org/10.1093/rheumatology/keaa514
  8. Forstenpointner J., Sendel M., Moeller P., Reimer M., Canaan-Kühl S., Gaedeke J., Rehm S., Hüllemann P., Gierthmühlen J., Baron R. Bridging the Gap Between Vessels and Nerves in Fabry Disease // Frontiers in Neuroscience. 2020. Vol. 14. P. 448–458. https://doi.org/10.3389/fnins.2020.00448
  9. Cutolo M., Vanhaecke A., Ruaro B., Deschepper E., Ickinger C., Melsens K., Piette Y., Trombetta A. C., De Keyser F., Smith V. Is laser speckle contrast analysis (LASCA) the new kid on the block in systemic sclerosis? A systematic literature review and pilot study to evaluate reliability of LASCA to measure peripheral blood perfusion in scleroderma patients // Autoimmunity Reviews. 2018. Vol. 17, № 8. P. 775–780. https://doi.org/10.1016/j.autrev.2018.01.023
  10. Wang G., Zhang Y. P., Gao Z., Shields L. B. E., Li F., Chu T., Lv H., Moriarty T., Xu X. M., Yang X., Shields C. B., Cai J. Pathophysiological and behavioral deficits in developing mice following rotational acceleration-deceleration traumatic brain injury // Disease Models & Mechanisms. 2018. Vol. 11, № 1. P. 1210–1242. https://doi.org/10.1242/dmm.030387
  11. Tarantini S., Fulop G. A., Kiss T., Farkas E., ZöleiSzénási D., Galvan V., Toth P., Csiszar A., Ungvari Z., Yabluchanskiy A. Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer’s disease using functional laser speckle contrast imaging // Geroscience. 2017. Vol. 39, № 4. P. 465–473. https://doi.org/10.1007/s11357-017-9980-z
  12. Orozco Merino M. Y., Lasca L. Iliopectineal bursitis // Revista de la Facultad de Ciencias Medicas Univ Nac Cordoba. 2016. Vol. 73, № 4. Р. 306 (in Spanish). PMID: 28152373
  13. Brauer J. I., Beech I. B., Sunner J. Mass Spectrometric Imaging Using Laser Ablation and Solvent Capture by Aspiration (LASCA) // J Am Soc Mass Spectrom. 2015. Vol. 26, № 9. P. 1538–1547. https://doi.org/10.1007/s13361-015-1176-0
  14. Koshoji N. H., Bussadori S. K., Bortoletto C. C., Prates R. A., Oliveira M. T., Deana A. M. Laser speckle imaging: A novel method for detecting dental erosion // PLoS One. 2015. Vol. 10, № 2. P. 1–9. https://doi.org/10.1371/journal.pone.0118429
  15. Ulianova O. V., Ulyanov S. S., Li P. Qingming Luo Estimation of reactogenicity of preparations produced on the basis of photoinactivated live vaccines against brucellosis and tularaemia on the organismic level // Quantum Electronics. 2011. Vol. 41, № 4. P. 340–343. https://doi.org/10.1070/QE2011v041n04ABEH014600
  16. Ulyanov S. S., Ganilova Y., Zhu D., Qiu J., Li P., Ulianova O. V., Luo Q. LASCA with a small number of scatterers : Application for monitoring of microflow // Europhysics Letters. 2008. Vol. 82, № 1. P. 18005–18011. https://doi.org/18005.10.1209/0295-5075/82/18005
  17. Ulianova O. V., Rebeza O., Ulyanov S. S. Investigations of processes of the growth of colonies of bacterial cells by the method of LASCA // Optics and Spectroscopy. 2016. Vol. 120, № 1. P. 88–93. https://doi.org/10.1134/S0030400X16010227
  18. Ulianova O. V., Ulyanov S. S., Zaytsev S. S., Saltykov Y. V., Feodorova V. A. LASCA-imaging of GB-speckles : Application for detection of the gene polymorphism in bacterial model // Laser Physics Letters. 2020. Vol. 17, № 6. P. 065603–065609. https://doi.org/10.1088/1612- 202X/ab8b66
  19. Lesk A. M. Introduction to Bioinformatics. Oxford: Oxford University Press, 2002. 314 p. https://doi.org/1002/biot.200800277
  20. Sintchenko V. Roper M. Pathogen genome bioinformatics // Methods in Molecular Biology. 2014. Vol. 41, № 4. P. 173–193. https://doi.org/10.1007/978-1-4939-0847-9_10
  21. Collier J. H., Allison L., Lesk A. M., Stuckey P. J., Garcia de la Banda M., Konagurthu A. S. Statistical inference of protein structural alignments using information and compression // Bioinformatics. 2017. Vol. 33, № 7. P. 1005–1013. PMID: 28065899. https://doi.org/10.1093/bioinformatics/btw757
  22. Collier J. H., Allison L., Lesk A. M., Garcia de la Banda M., Konagurthu A. S. A new statistical framework to assess structural alignment quality using information compression // Bioinformatics. 2014. Vol. 30, № 17. P. 512–518. PMID: 25161241. https://doi.org/10.1093/bioinformatics/btu460
  23. d’Humières C., Salmona M., Dellière S., Leo S., Rodriguez C., Angebault C., Alanio A., Fourati S., Lazarevic V., Woerther P. L., Schrenzel J., Ruppé E. The Potential Role of Clinical Metagenomics in Infectious Diseases : Therapeutic Perspectives // Drugs. 2021. Vol. 81. P. 1453–1466. https://doi.org/10.1007/s40265-021-01572-4
  24. Kosvyra A., Ntzioni E., Chouvarda I. Network analysis with biological data of cancer patients : A scoping review // Journal of Biomedical Informatics. 2021. Vol. 120. P. 103873–103884. https://doi.org/10.1016/j.jbi.2021.103873
  25. Rahmatbakhsh M., Gagarinova A., Babu M. Bioinformatic Analysis of Temporal and Spatial Proteome Alternations During Infections // Front Genet. 2021. Vol. 12. P. 667936–667942. https://doi.org/10.3389/fgene.2021.667936
  26. Soltaninejad H., Zare-Zardini H., Ordooei M., Ghelmani Y., Ghadiri-Anari A., Mojahedi S., Hamidieh A. A. Antimicrobial Peptides from Amphibian Innate Immune System as Potent Antidiabetic Agents : A Literature Review and Bioinformatics Analysis // Journal of Diabetes Research. 2021. № 3. P. 1–10. https://doi.org/10.1155/2021/2894722
  27. Diwan A. D., Harke S. N., Gopalkrishna, Panche A. N. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview // Journal of Animal Physiology and Animal Nutrittion. 2021. P. 1–29. https://doi.org/10.1111/jpn.13619
  28. Gawlik A., Salonen A., Jian C., Yanover C., Antosz A., Shmoish M., Wasniewska M., Bereket A., Wudy S. A., Hartmann M. F., Thivel D., Matusik P., Weghuber D., Hochberg Z. Personalized approach to childhood obesity: Lessons from gut microbiota and omics studies. Narrative review and insights from the 29th European childhood obesity congress // Pediatric Obesity. 2021. P. 1–9. https://doi.org/10.1111/ijpo.12835
  29. Mandeles S. Nucleic Acid Sequence Analysis. New York ; London : Columbia University Press, 1972. 282 p.
  30. Ulyanov S. S., Zaytsev S. S., Ulianova O. V., Saltykov Y. V., Feodorova V. A. Using of methods of speckle optics for Chlamydia trachomatis typing // Proceeding of SPIE. Bellingham, Washington : SPIE Press, 2017. Vol. 10336. P. 03360D. https://doi.org/10.1117/12.2270760
  31. Ulyanov S. S., Ulianova O. V., Zaytsev S. S., Saltykov Y. V., Feodorova V. A. Statistics on gene-based laser speckles with a small number of scatterers : Implications for the detection of polymorphism in the Chlamydia trachomatis omp1 gene // Laser Physics Letters. 2018. Vol. 15, № 4. P. 1–6. https://doi.org/10.1088/1612-202X/aaa11c
  32. Feodorova V. A., Ulyanov S. S., Zaytsev S. S., Saltykov Y. V., Ulianova O. V. Optimization of algorithm of coding of genetic information of Chlamydia // Proceedings of SPIE. Bellingham, Washington : SPIE Press, 2018. Vol. 10716. P. 107160Q. https://doi.org/10.1117/12.2314640
  33. Feodorova V. A., Saltykov Y. V., Zaytsev S. S., Ulyanov S. S., Ulianova O. V. Application of virtual phase shifting speckle-interferometry for detection of polymorphism in the Chlamydia trachomatis omp1 gene // Proceedings of SPIE. Bellingham, Washington : SPIE Press, 2018. Vol. 10716. P. 107160M. https://doi.org/10.1117/12.2314700
  34. Ульянов С. С., Ульянова О. В., Зайцев С. С., Хижнякова М. А., Салтыков Ю. В., Филонова Н. Н., Субботина И. А., Ляпина А. М., Федорова В. А. Исследование статистических характеристик оптических GB-спеклов, формирующихся при рассеянии света на виртуальных структурах нуклеотидных последовательностей генов энтеробактерий // Известия Саратовского университета. Новая серия. Серия: Физика. 2018. Т. 18, вып. 2. С. 123–137. https://doi.org/10.18500/1817-3020-2018-18-2-123-137
  35. Jelocnik M., Polkinghorne A., Pannekoek Y. Multilocus Sequence Typing (MLST) of Chlamydiales // Methods Molecular Biology. 2019. Vol. 2042. P. 69–86. https://doi.org/10.1038/emi.2016.135
  36. Pérez-Losada M., Arenas M., Castro-Nallar E. Microbial sequence typing in the genomic era // Infect Genet Evol. 2018. Vol. 63. P. 346–359. https://doi.org/10.1016/j.meegid.2017.09.022
  37. Glaeser S. P., Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy // Syst Appl Microbiol. 2015. Vol. 38, № 4. P. 237–245. https://doi.org/10.1016/j.syapm.2015.03.007
  38. Liang W. T., Liu H., Deng Y. [Multilocus sequence typing and its application on population genetic structure analysis of parasites] // Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2014. Vol. 26, № 4. P. 449–452. PMID: 25434151
  39. Matsumura Y. [Multilocus sequence typing (MLST) analysis] // Rinsho Byori. 2013. Vol. 61, № 12. P. 1116–1122. PMID: 24605545
Поступила в редакцию: 
09.08.2021
Принята к публикации: 
15.09.2021
Опубликована: 
30.11.2021