Для цитирования:
Кочкуров Л. А., Зимняков Д. А. Компьютерное моделирование флуктуаций проводимости в динамической перколяционной модели на основе резистивных сеток // Известия Саратовского университета. Новая серия. Серия: Физика. 2025. Т. 25, вып. 1. С. 106-112. DOI: 10.18500/1817-3020-2025-25-1-106-112, EDN: VZFIRB
Компьютерное моделирование флуктуаций проводимости в динамической перколяционной модели на основе резистивных сеток
Представлены результаты компьютерного моделирования динамической перколяционной системы в форме трехмерной прямоугольной решетки с резистивной проводимостью между узлами. Проводимость подобной системы при подходе к порогу перколяции вычислялась на основе численного решения уравнений Кирхгофа для каждого из узлов решетки. Флуктуации проводимости системы обусловлены тем, что при фиксированном общем числе непроводящих узлов часть проводящих узлов обменивалась местами с соседними непроводящими узлами на каждом шаге моделирования. Полученные модельные функции спектральной плотности флуктуаций проводимости системы характеризуются однородным распределением спектральной плотности в низкочастотной области и степенным убыванием в области высоких частот с показателем, уменьшающимся по мере роста скорости обмена узлов в системе.
- Saberi A. A. Recent advances in percolation theory and its applications. Physics Reports, 2015, vol. 578, pp. 1–32. https://doi.org/10.1016/j.physrep.2015.03.003
- Li M., Liu R.-R., Lü L., Hu M.-B., Xu S., Li Y. Z. Percolation on complex networks: Theory and application. Physics Reports, 2021, vol. 907, pp. 1–68. https://doi.org/10.1016/j.physrep.2020.12.003
- Xu X., Wang J., Lv J.-P., Deng Y. Simultaneous analysis of three-dimensional percolation models. Frontiers of Physics, 2014, vol. 9, pp. 113–119. https://doi.org/10.1007/s11467-013-0403-z
- Liu J., Regenauer-Lieb K. Application of percolation theory to microtomography of structured media: Percolation threshold, critical exponents, and upscaling. Physical Review E, 2011, vol. 83, iss. 1, art. 016106. https://doi.org/10.1103/PhysRevE.83.016106
- Hunt A., Ewing R., Ghanbarian B. Percolation theory for flow in porous media. Cham, Springer, 2014, XXIV+447 p. https://doi.org/10.1007/978-3-319-03771-4
- Rammal R., Tannous C., Tremblay A. M. S. 1/f noise in random resistor networks: Fractals and percolating systems. Physical Review A, 1985, vol. 31, iss. 4, pp. 2662–2671. https://doi.org/10.1103/PhysRevA.31.2662
- Rammal R., Tannous C., Breton P., Tremblay A. -M. S. Flicker (1/ f) noise in percolation networks: A new hierarchy of exponents. Physical Review Letters, 1985, vol. 54, iss. 15, pp. 1718–1721. https://doi.org/10.1103/PhysRevLett.54.1718
- Blumenfeld R., Meir Y., Aharony A., Aharony A., Harris A. B. Resistance fluctuations in randomly diluted networks. Physical Review B, 1987, vol. 35, iss. 7, pp. 3524–3535. https://doi.org/10.1103/PhysRevB.35.3524
- Garfunkel G. A., Alers G. B., Weissman M. B., Mochel J. M., VanHarlingen D. J. Universal-Conductance-Fluctuation 1/f Noise in a Metal-Insulator Composite. Physical Review Letters, 1988, vol. 60, iss. 26, pp. 2773–2776. https://doi.org/10.1103/PhysRevLett.60.2773
- Stephany J. F. Frequency limits of 1/f noise. Journal of Physics: Condensed Matter, 2000, vol. 12, iss. 11, pp. 2469–2483. https://doi.org/10.1088/0953-8984/12/11/313
- Nandi U. N., Mukherjee C. D., Bardhan K. K. 1/f noise in nonlinear inhomogeneous systems. Physical Review B, 1996, vol. 54, iss. 18, pp. 12903–12914. https://doi.org/10.1103/PhysRevB.54.12903
- Zimnyakov D. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Varezhnikov A. S., Gorshkov N. V., Ushakov A. V., Tokarev A. S., Tsypin D. V., Vereshagin D. A. Semiconductor-to-insulator transition in interelectrode bridge-like ensembles of anatase nanoparticles under a long-term action of the direct current. Nanomaterials, 2023, vol. 13, iss. 9, art. 1490. https://doi.org/10.3390/nano13091490
- Kochkurov L. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Klimova A. A., Zimnyakov D. A. Degradation of conductivity of low-dimensional nanostructured semiconductor layers under long-term dc current flow. Izvestiya of Saratov University. Physics, 2024, vol. 24, iss. 1, pp. 41–51 (in Russian). https://doi.org/10.18500/1817-3020-2024-24-1-41-51, EDN: AUQNBD
- Lust L. M., Kakalios J. Computer simulations of conductance noise in a dynamical percolation resistor network. Physical Review E, 1994, vol. 50, iss. 5, pp. 3431–3435. https://doi.org/10.1103/PhysRevE.50.3431
- Gallyamov S. R., Melchukov S. A. Percolation model of two-phase lattice conductivity: Theory and computer experiment. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2010, iss. 4, pp. 112–122 (in Russian). https://doi.org/10.20537/vm100413
- Bunde A., Havlin S., eds. Fractals and disordered systems. Berlin, Springer, 2012, XXII+408 р. https://doi.org/10.1007/978-3-642-84868-1
- Feder J. Fractals. Physics of Solids and Liquids. New York, Springer, 2013. XXVI+284 p. https://doi.org/10.1007/978-1-4899-2124-6
- Herrmann H. J., Hong D. C., Stanley H. E. Backbone and elastic backbone of percolation clusters obtained by the new method of “burning”. Journal of Physics A: Mathematical and General, 1984, vol. 17, iss. 5, pp. L261–L266. https://doi.org/10.1088/0305-4470/17/5/008
- 54 просмотра