Для цитирования:
Фатеев И. С., Полежаев А. А. Химерные состояния в системах супердиффузионно связанных нейронов // Известия Саратовского университета. Новая серия. Серия: Физика. 2024. Т. 24, вып. 4. С. 328-339. DOI: 10.18500/1817-3020-2024-24-4-328-339, EDN: AKRGLX
Химерные состояния в системах супердиффузионно связанных нейронов
Одни из самых интригующих коллективных явлений, которые могут наблюдаться в системах связанных осцилляторов различной природы, – это химерные состояния. Они характеризуются возникновением согласованной пространственной синхронизации и рассинхронизации в изначально однородной системе. В данной работе обсуждаются результаты исследований одномерной и двухмерной систем взаимодействующих нейронов, организованных на основе дробного оператора Лапласа и супердиффузионного кинетического механизма. Их использование существенно расширяет возможности описания химероподобных явлений с позиции классического реакционно-диффузионного подхода. Ввиду собственной математической лаконичности и способности воспроизвести почти все известные сценарии точечной нейронной активности, в качестве нелинейной части были использованы функции модели Hindmarsh–Rose. В обсуждаемых исследованиях демонстрируется, что одномерные и двухмерные системы двух- и трехкомпонентных реакционно-супердиффузионных уравнений, организованных на основе дробного оператора Лапласа, способны воспроизводить химерные состояния. Проанализированы динамические режимы в параметрическом пространстве параметров дробного оператора Лапласа, связанные с формообразующими особенностями сетей взаимодействующих нейронов. Обсуждаются параметрические области возникновения режимов синхронизации, режимов некогерентного поведения и химерных состояний. Результаты представленных исследований могут быть использованы в задачах вычислительных нейронаук и различных междисциплинарных исследований в качестве альтернативы существующим сетевым моделям.
- Kuramoto Y., Battogtokh D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. arXiv preprint cond-mat/0210694, 2002. https://doi.org/10.48550/arXiv.cond-mat/0210694
- Abrams D. M., Strogatz S. H. Chimera states for coupled oscillators. Physical Review Letters, 2004, vol. 93, no. 17, pp. 174102. https://doi.org/10.1103/PhysRevLett.93.174102
- Zakharova A. Chimera patterns in networks. Switzerland, Springer, 2020. 233 p. https://doi.org/10.1007/978-3-030-21714-3
- Maistrenko Y. L., Vasylenko A., Sudakov O., Levchenko R., Maistrenko V. L. Cascades of multiheaded chimera states for coupled phase oscillators. International Journal of Bifurcation and Chaos, 2014, vol. 24, no. 08, pp. 1440014. https://doi.org/10.1142/S0218127414400148
- Martens E. A., Thutupalli S., Fourrière A., Hallatschek O. Chimera states in mechanical oscillator networks. Proceedings of the National Academy of Sciences, 2013, vol. 110, no. 26, pp. 10563–10567. https://doi.org/10.1073/pnas.1302880110
- Viktorov E. A., Habruseva T., Hegarty S. P., Huyet G., Kelleher B. Coherence and incoherence in an optical comb. Physical Review Letters, 2014, vol. 112, no. 22, pp. 224101. https://doi.org/10.1103/PhysRevLett.112.224101
- Tinsley M. R., Nkomo S., Showalter K. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nature Physics, 2012, vol. 8, no. 9, pp. 662–665. https://doi.org/10.1038/nphys2371
- Bera B. K., Ghosh D., Lakshmanan M. Chimera states in bursting neurons. Physical Review E, 2016, vol. 93, no. 1, pp. 012205. https://doi.org/10.1103/PhysRevE.93.012205
- Wang Z., Xu Y., Li Y., Kapitaniak T., Kurths J. Chimera states in coupled Hindmarsh–Rose neurons with α-stable noise. Chaos, Solitons & Fractals, 2021, vol. 148, pp. 110976. https://doi.org/10.1016/j.chaos.2021.110976
- Hizanidis J., Kanas V. G., Bezerianos A., Bountis T. Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models. International Journal of Bifurcation and Chaos, 2014, vol. 24, no. 03, pp. 1450030. https://doi.org/10.1142/S0218127414500308
- Majhi S., Bera B. K., Ghosh D., Perc M. Chimera states in neuronal networks: A review. Physics of Life Reviews, 2019, vol. 28, pp. 100–121. https://doi.org/10.1016/j.plrev.2018.09.003
- Parastesh F., Jafari S., Azarnoush H., Shahriari Z., Wang Z., Boccaletti S., Perc M. Chimeras. Physics Reports, 2021, vol. 898, pp. 1–114. https://doi.org/10.1016/j.physrep.2020.10.003
- Huo S., Tian C., Kang L., Liu Z. Chimera states of neuron networks with adaptive coupling. Nonlinear Dynamics, 2019, vol. 96, pp. 75–86. https://doi.org/10.1007/s11071-019-04774-4
- Bera B. K., Ghosh D. Chimera states in purely local delay-coupled oscillators. Physical Review E, 2016, vol. 93, no. 5, pp. 052223. https://doi.org/10.1103/PhysRevE.93.052223
- Fateev I., Polezhaev A. Chimera states in a chain of superdiffusively coupled neurons. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2023, vol. 33, no. 10, pp. 103110. https://doi.org/10.1063/5.0168422
- Kundu S., Ghosh D. Higher-order interactions promote chimera states. Physical Review E, 2022, vol. 105, no. 4, pp. L042202. https://doi.org/10.1103/PhysRevE.105.L042202
- Qin H., Ma J., Wang C., Chu R. Autapse-induced target wave, spiral wave in regular network of neurons. Science China Physics, Mechanics & Astronomy, 2014, vol. 57, pp. 1918–1926. https://doi.org/10.1007/s11433-014-5466-5
- Jun M., He-Ping Y., Yong L., Shi-Rong L. Development and transition of spiral wave in the coupled Hindmarsh–Rose neurons in two-dimensional space. Chinese Physics B, 2009, vol. 18, no. 1, pp. 98–105. https://doi.org/10.1088/1674-1056/18/1/017
- Huang X., Xu W., Liang J., Takagaki K., Gao X., Wu J. Y. Spiral wave dynamics in neocortex. Neuron, 2010, vol. 68, no. 5, pp. 978–990. https://doi.org/10.1016/j.neuron.2010.11.007
- Wu J. Y., Huang X., Zhang C. Propagating waves of activity in the neocortex: What they are, what they do. The Neuroscientist, 2008, vol. 14, no. 5, pp. 487–502. https://doi.org/10.1177/1073858408317066
- Shepelev I. A., Bukh A. V., Muni S. S., Anishchenko V. S. Role of solitary states in forming spatiotemporal patterns in a 2D lattice of van der Pol oscillators. Chaos, Solitons & Fractals, 2020, vol. 135, pp. 109725. https://doi.org/10.1016/j.chaos.2020.109725
- Rybalova E., Bukh A., Strelkova G., Anishchenko V. Spiral and target wave chimeras in a 2D lattice of map-based neuron models. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, vol. 29, no. 10, pp. 101104. https://doi.org/10.1063/1.5126178
- Fateev I., Polezhaev A. Chimera states in a lattice of superdiffusively coupled neurons. Chaos, Solitons & Fractals, 2024, vol. 181, pp. 114722. https://doi.org/10.1016/j.chaos.2024.114722
- Kasimatis T., Hizanidis J., Provata A. Three-dimensional chimera patterns in networks of spiking neuron oscillators. Physical Review E, 2018, vol. 97, no. 5, pp. 052213. https://doi.org/10.1103/PhysRevE.97.052213
- Klages R., Radons G., Sokolov I. M. Anomalous transport. Weinheim, Wiley-VCH Verlag, 2008. 608 p. https://doi.org/10.1002/9783527622979
- Ramakrishnan B., Parastesh F., Jafari S., Rajagopal K., Stamov G., Stamova I. Synchronization in a multiplex network of nonidentical fractional-order neurons. Fractal and Fractional, 2022, vol. 6, no. 3, pp. 169. https://doi.org/10.3390/fractalfract6030169
- Yan B., Parastesh F., He S., Rajagopal K., Jafari S., Perc M. Interlayer and intralayer synchronization in multiplex fractional-order neuronal networks. Fractals, 2022, vol. 30, no. 10, pp. 22401946. https://doi.org/10.1142/S0218348X22401946
- Giresse T. A., Crepin K. T., Martin T. Generalized synchronization of the extended Hindmarsh–Rose neuronal model with fractional order derivative. Chaos, Solitons & Fractals, 2019, vol. 118, pp. 311–319. https://doi.org/10.1016/j.chaos.2018.11.028
- Buzsáki G., Mizuseki K. The log-dynamic brain: How skewed distributions affect network operations. Nature Reviews Neuroscience, 2014, vol. 15, no. 4, pp. 264–278. https://doi.org/10.1038/nrn3687
- Cossell L., Iacaruso M. F., Muir D. R., Houlton R., Sader E. N., Ko H., Hofer S. B., Mrsic-Flogel T. D. Functional organization of excitatory synaptic strength in primary visual cortex. Nature, 2015, vol. 518, no. 7539, pp. 399–403. https://doi.org/10.1038/nature14182
- Song S., Sjöström P. J., Reigl M., Nelson S., Chklovskii D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 2005, vol. 3, no. 3, pp. e68. https://doi.org/10.1371/journal.pbio.0030068
- Hilgetag C. C., Goulas A. Is the brain really a small-world network? Brain Structure and Function, 2016, vol. 221, pp. 2361–2366. https://doi.org/10.1007/s00429-015-1035-6
- Beggs J. M., Plenz D. Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 2003, vol. 23, no. 35, pp. 11167–11177. https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
- Barabási A. L., Albert R. Emergence of scaling in random networks. Science, 1999, vol. 286, no. 5439, pp. 509–512. https://doi.org/10.1126/science.286.5439.509
- Baronchelli A., Radicchi F. Lévy flights in human behavior and cognition. Chaos, Solitons & Fractals, 2013, vol. 56, pp. 101–105. https://doi.org/10.1016/j.chaos.2013.07.013
- Wardak A., Gong P. Fractional diffusion theory of balanced heterogeneous neural networks. Physical Review Research, 2021, vol. 3, no. 1, pp. 013083. https://doi.org/10.1103/PhysRevResearch.3.013083
- Lee H. G. A second-order operator splitting Fourier spectral method for fractional-in-space reaction–diffusion equations. Journal of Computational and Applied Mathematics, 2018, vol. 333, pp. 395–403. https://doi.org/10.1016/j.cam.2017.09.007
- Liu F., Turner I., Anh V., Yang Q., Burrage K. A numerical method for the fractional Fitzhugh–Nagumo monodomain model. Anziam Journal, 2012, vol. 54, pp. C608–C629. https://doi.org/10.21914/anziamj.v54i0.6372
- Chen G., Gong P. A spatiotemporal mechanism of visual attention: Superdiffusive motion and theta oscillations of neural population activity patterns. Science Advances, 2022, vol. 8, no. 16, pp. Eabl4995. https://doi.org/10.1126/sciadv.abl4995
- Qi Y., Gong P. Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits. Nature Communications, 2022, vol. 13, no. 1, pp. 4572. https://doi.org/10.1038/s41467-022-32279-z
- Samko S. G., Kilbas A. A, Marichev O. I. Fractional integrals and derivatives: Theory and applications. Switzerland, Gordon and Breach, 1993. 976 p.
- Zhuang P., Liu F., Anh V., Turner I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Journal on Numerical Analysis, 2009, vol. 47, no. 3, pp. 1760–1781. https://doi.org/10.1137/080730597
- Liu F., Chen S., Turner I., Burrage K., Anh V. Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Open Phys., 2013, vol. 11, no. 10, pp. 1221–1232. https://doi.org/10.2478/s11534-013-0296-z
- Li B. W., Dierckx H. Spiral wave chimeras in locally coupled oscillator systems. Physical Review E, 2016, vol. 93, no. 2, pp. 020202. https://doi.org/10.1103/PhysRevE.93.020202
- Garcia-Ojalvo J., Elowitz M. B., Strogatz S. H. Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing. Proceedings of the National Academy of Sciences, 2004, vol. 101, no. 30, pp. 10955–10960. https://doi.org/10.1073/pnas.0307095101
- Gonze D., Bernard S., Waltermann C., Kramer A., Herzel H. Spontaneous synchronization of coupled circadian oscillators. Biophysical Journal, 2005, vol. 89, no. 1, pp. 120–129. https://doi.org/10.1529/biophysj.104.058388
- Gopal R., Chandrasekar V. K., Venkatesan A., Lakshmanan M. Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling. Physical Review E, 2014, vol. 89, no. 5, pp. 052914. https://doi.org/10.1103/PhysRevE.89.052914
- Kundu S., Majhi S., Muruganandam P., Ghosh D. Diffusion induced spiral wave chimeras in ecological system. The European Physical Journal Special Topics, 2018, vol. 227, pp. 983–993. https://doi.org/10.1140/epjst/e2018-800011-1
- 173 просмотра