Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Genina E. A., Bashkatov A. N., Semyachkina-Glushkovskaya O. V., Tuchin V. V. Optical Clearing of Cranial Bone by Multicomponent Immersion Solutions and Cerebral Venous Blood Flow Visualization. Izvestiya of Saratov University. Physics , 2017, vol. 17, iss. 2, pp. 98-110. DOI: 10.18500/1817-3020-2017-17-2-98-110

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 222)
Language: 
Russian
UDC: 
535.3; 53.06; 612.1

Optical Clearing of Cranial Bone by Multicomponent Immersion Solutions and Cerebral Venous Blood Flow Visualization

Autors: 
Genina Elina Alekseevna, Saratov State University
Bashkatov Alexey Nikolaevich, Saratov State University
Tuchin Valery Viсtorovich, Science Medical Center, Saratov State University
Abstract: 

Background and Objectives: Optical clearing of bone tissue is of great practical interest, which opens up the possibility of the development of minimally invasive laser diagnostics and brain therapy. The aim of this work is the study of the optical clearing of cranial bone using multicomponent optical clearing agents, and the possibility of the measurement of cerebral blood flow. Materials and Methods: Optical clearing of rat skull bone ex vivo and in vivo using two solutions with different compositions and refractive indices comprising ethanol or thiasone as biological tissue permeability enhancers, has been studied in the paper. Kinetics of collimated transmission of the bone samples under the influence of these solutions has been measured in the spectral range of 600-900 nm, and Doppler optical coherence tomography (DOCT) of rat cerebral vessels has been carried out. Results: Within 4 hours, a relative increase in the collimated transmittance under the action of the immersion solutions with inclusion of ethanol and thiasone by 15% and 80%, respectively, has been obtained. The effectiveness of optical clearing of bone tissue has been 4.5±0.4% and 13.2±3.4%, respectively. The use of the solutions has contributed to significant improvement of visualization of vena cerebri magna using DOCT without damage of the cranial bone and allowed determining the velocity of blood flow in the vein in the normal state (7 mm/sec) as well as under the action of adrenaline (5.5 mm/ sec). Conclusion: Thus, it is shown that the use of these solutions increases the probing depth of DOCT and improves the imaging of cerebral blood vessels, which can be used in the diagnosis of various pathological changes, including blood disorders. 

Reference: 

1. Myllylä T., Toronov V., Claassen J., Kiviniemi V., Tuchin V. Near-infrared spectroscopy in multimodal brain research. Chapter 10 // Handbook of Optical Biomedical Diagnostics / ed. V. V. Tuchin. 2nd ed. : in 2 vol. Vol. 1: Light – Tissue Interaction. Bellingham : SPIE Press, 2016. P. 687–735.

2. Alderliesten T., De Vis J. B., Lemmers P. M. A., van Bel F., Benders M. J. N. L., Hendrikse J., Petersen E. T. Simultaneous quantitative assessment of cerebral physiology using respiratory-calibrated MRI and near-infrared spectroscopy in healthy adults // NeuroImage. 2014. Vol. 85, pt. 1. P. 255–263.

3. Tong Y., Bergethon P. R., Frederick B. D. An improved method for mapping cerebrovascular reserve using concurrent fMRI and near-infrared spectroscopy with Regressor Interpolation at Progressive Time Delays (RIPTiDe) // NeuroImage. 2011. Vol. 56, № 4. P. 2047–2057.

4. Hoge R. D., Franceschini M. A., Covolan R. J. M., Huppert T., Mandeville J. B., Boas D. A. Simultaneous recording of task-induced changes in blood oxygenation, volume, and fl ow using diffuse optical imaging and arterial spin-labeling MRI // NeuroImage. 2005. Vol. 25, № 3. P. 701–707.

5. Zhu D., Larin K., Luo Q., Tuchin V. V. Recent progress in tissue optical clearing // Laser & Photonics Reviews. 2013. Vol. 7, № 5. P. 732–757.

6. Genina E. A., Bashkatov A. N., Sinichkin Yu. P., Yanina I. Yu., Tuchin V. V. Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy // Journal of Biomedical Photonics & Engineering. 2015. Vol. 1, № 1. P. 22–58.

7. Wang J., Zhang Y., Xu Th., Luo Qm., Zhu D. An innovative transparent cranial window based on skull optical clearing // Laser Phys. Lett. 2012. Vol. 9. P. 469–473.

8. Bykov A., Hautala T., Kinnunen M., Popov A., Karhula S., Saarakkala S., Nieminen M.T., Tuchin V., Meglinski I. Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage // J. Biophotonics. 2016. Vol. 9, № 3. P. 270–275.

9. Neu C. P., Novak T., Gilliland K. F., Marshall P., Calve S. Optical clearing in collagen- and proteoglycanrich osteochondral tissues // Osteoarthr. Cartil. 2015. Vol. 23. P. 405–413.

10. Calve S., Ready A., Huppenbauer C., Main R , Neu C. P. Optical clearing in dense connective tissues to visualize cellular connectivity in situ // PLoS ONE. 2015. Vol. 10. e0116662.

11. Berke I. M., Miola J. P., David M. A., Smith M. K., Price C. Seeing through musculoskeletal tissues : improving in situ imaging of bone and the lacunar canalicular system through optical clearing // PLoS ONE. 2016. Vol. 11, № 3. e0150268.

12. Genina E. A., Bashkatov A. N., Tuchin V. V. Optical clearing of cranial bone // Advanced Optical Technologies. 2008. Vol. 2008. 267867.

13. Karma S., Homan J., Stoianovic C., Choi B. Enhanced fluorescence imaging with DMSO-mediated optical clearing // Journal of Innovative Optical Health Sciences. 2010. Vol. 3, № 3. P. 153–158.

14. Zhu D., Wang J., Zhi Z., Wen X., Luo Q. Imaging dermal blood fl ow through the intact rat skin with an optical clearing method // J. Biomed. Opt. 2010. Vol. 15, 026008.

15. 026008. 15. Zhi Z., Han Z., Luo Q., Zhu D. Improve optical clearing of skin in vitro with propylene glycol as a penetration enhancer // Journal of Innovative Optical Health Sciences. 2009. Vol. 2, № 3. P. 269–278.

16. Sznitowska M. The infl uence of ethanol on permeation behavior of the porous pathway in the stratum corneum // Intern. J. Pharmacol. 1996. Vol. 137. P. 137–140.

17. Xu X., Zhu Q. Evaluation of skin optical clearing enhancement with Azone as a penetration enhancer // Optics Communications. 2007. Vol. 279. P. 223–228.

18. Jiang J., Wang R. K. How different molarities of oleic acid as enhancer exert its effect on optical clearing of skin tissue in vitro // Journal of X-Ray Science and Technology. 2005. Vol. 13. P. 149–159.

19. Chen K., Liang Y., Zhang Y. Study on refl ection of human skin with liquid paraffi n as the penetration enhancer by spectroscopy // J. Biomed. Opt. 2013. Vol. 18, № 10. 105001.

20. Zhong H., Guo Z., Wei H., Guo L., Wang C., He Y., Xiong H., Liu S. Synergistic effect of ultrasound and Thiazone - PEG 400 on human skin optical clearing in vivo // Photochemistry and Photobiology. 2010. Vol. 86. P. 732–737.

21. Wen X., Jacques S. L., Tuchin V. V., Zhu D. Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging // J. Biomed. Opt. 2012. Vol. 17, № 6. 066022.

22. Liu Y., Yang X., Zhu D., Luo Q. Optical clearing agents improve photoacoustic imaging in the optical diffusive regime // Optics Letters. 2013. Vol. 38, № 20. P. 4236–4239.

23. Jin X., Deng Z., Wang J., Ye Q., Mei J., Zhou W., Zhang C., Tian J. Study of the inhibition effect of thiazone on muscle optical clearing // J. Biomed. Opt. 2016. Vol. 21, № 10. 105004.

24. Kurihara-Bergstrom T., Knutson K., de Noble L. J., Goates C. Y. Percutaneous absorption enhancement of an ionic molecule by ethanol–water system in human skin // Pharm. Res. 1990. Vol. 7. P. 762–766.

25. Genina E. A., Bashkatov A. N., Tuchin V. V. Effect of ethanol on the transport of methylene blue through stratum corneum // Medical Laser Application. 2008. Vol. 23, № 1. P. 31–38.

26. Genina E. A., Bashkatov A. N., Tuchin V. V. Study of ethanol impact on the transepidermal transport of indocyanine green with backscattering spectroscopy. Izv. Saratov Univ. (N.S.), Ser. Physics, 2016, vol. 16, iss. 2, pp. 91–96. DOI: https://doi.org/10.18500/1817-3020-2016-16-2-91-96

27. Histology. Bone tissue. Available at: http://histologybook.ru/kostnaja_tkan.html (accessed 27 January 2017) (in Russian).

28. Boskey A., Mendelsohn R. Infrared analysis of bone in health and disease // J. Biomed. Opt. 2005. Vol. 10, № 3. 031102.

29. Ager III J. W., Nalla R. K., Breeden K. L., Ritchie R. O. Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone // J. Biomed. Opt. 2005. Vol. 10, № 3. 034012.

30. Berezov T. T., Korovkin B. F. Biologicheskaya chimia [Biological chemistry]. Moscow, Medicine, 1990. 543 p. (in Russian).

31. Pifferi A., Torricelli A., Taroni P., Bassi A., Chikoidze E., Giambattistelli E., Cubeddu R. Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies // J. Biomed. Opt. 2004. Vol. 9, № 3. P. 474–480.

32. Clarke B. Normal bone anatomy and physiology // Clin. J. Am. Soc. Nephrol. 2008. Vol. 3. P. S131–S139.

33. White A., Hendler F., Smith E., Hill R., Leman I. Osnovy biochimii [Principles of biochemistry]: in 3th vol. Moscow, Mir, 1981, vol. 1, 539 p.; vol. 2, 619 p.; vol. 3, 731 p. (in Russian).

34. Fernández-Seara M. A., Wehrli S. L., Wehrli F. W. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance // Biophysical Journal. 2002. Vol. 82, № 1. P. 522–529.

35. Wilson E. E., Awonusi A., Morris M. D., Kohn D. H., Tecklenburg M. M. J., Beck L. W. Three structural roles for water in bone observed by solid-state NMR // Biophysical Journal. 2006. Vol. 90, № 10. P. 3722–3731.

36. Neuman W. F., Neuman M. W. The chemical dynamics of bone mineral. Chicago : University of Chicago Press, 1958. 209 p.

37. Wehrli F. W., Fernández-Seara M. A. Nuclear magnetic resonance studies of bone water // Annals of Biomedical Engineering. 2005. Vol. 33, № 1. P. 79–86.

38. Ascenzi A., Fabry C. Technique for dissection and measurement of refractive index of osteones // Journal of Biophysical and Biochemical Cytology. 1959. Vol. 6. P. 139–143.

39. Bourne G. H. The biochemistry and physiology of bone. N.Y. : Academic Press, 1956. 888 p.

40. Kou L., Labrie D., Chylek P. Refractive indices of water and ice in the 0.65-2.5μm spectral range // Appl. Opt. 1993. Vol. 32. P. 3531–3540.

41. Martin K. A. Direct measurement of moisture in skin by NIR spectroscopy // J. Soc. Cosmet. Chem. 1993. Vol. 44. P. 249–261.

42. Ugryumova N., Matcher S. J., Attenburrow D. P. Measurement of bone mineral density via light scattering // Phys. Med. Biol. 2004. Vol. 49. P. 469–483.

43. Firbank M., Hiraoka M., Essenpreis M., Delpy D. T. Measurement of the optical properties of the skull in the wavelength range 650-950 nm // Phys. Med. Biol. 1993. Vol. 38. P. 503–510.

44. Bashkatov A. N., Genina E. A., Tuchin V. V. Tissue Optical Properties. Chapter 5 // Handbook of Biomedical Optics / eds. D. A. Boas, C. Pitris, N. Ramanujam. Boca Raton : Taylor & Francis Group ; L. : LLC ; N.Y. : CRC Press Inc., 2011. P. 67–100.

45. Semyachkina-Glushkovskaya O. V., Lychagov V. V., Bibikova O. A., Semyachkin-Glushkovskiy I. A., Sindeev S. S., Zinchenko E. M., Kassim M. M., Ali A.-F.F., Leith A. H., Ulanova M. V., Tuchin V. V. The experimental study of stress-related pathological changes in cerebral venous blood fl ow in newborn rats assessed by DOCT // Journal of Innovative Optical Health Sciences. 2013. Vol. 6, № 3. 1350023.

46. Genina E. A., Bashkatov A. N., Tuchin V. V. Tissue optical immersion clearing // Expert Review of Medical Devices. 2010. Vol. 7, № 6. P. 825–842.

47. Genina E. A., Bashkatov A. N., Larin K. V., Tuchin V. V. Light-tissue interaction at optical clearing. Chapter 7 // Laser Imaging and Manipulation in Cell Biology / ed. F. S. Pavone. Weinheim : Wiley-VCH Verlag GmbH & Co., 2010. P. 115–164.

48. Bohren C. F., Huffman D. R. Absorption and scattering of light by small particles. New York, John Willey & Sons Inc., 1983, 530 p.

49. Genina E. A., Bashkatov A. N., Korobko A. A., Zubkova E. A., Tuchin V. V., Yaroslavsky I. V., Altshuler G. B. Optical clearing of human skin: comparative study of permeability and dehydration of intact and photothermally perforated skin // J. Biomed. Opt. 2008. Vol. 13, № 2. 021102.

50. Kotyk A., Yanacek K. Membranny transport [Membrane transport]. Moscow, Mir, 1980, 341 p. (in Russian).

51. Sindeev S. S., Lychagov V. V., Bibikova O. A., Ulanova M. V., Gekaluk A. S., Razubaeva V. I., Agranovich I. M., Al Hassani L., Al-Fatle F., Tuchin V. V., SemyachkinaGlushkovskaya O. V. Characteristics of pathological changes in cerebral blood fl ow following stoke in hypertensive rats. Izv. Saratov Univ. (N.S.), Ser. Chemistry. Biology. Ecology, 2014, vol. 14, iss. 3. pp. 76–80 (in Russian).

52. Srinivasan V. J., Jiang J. Y., Yaseen M. ., Radhakrishnan H., Wu W., Barry S., Cable A. E., Boas D. A. Rapid volumetric angiography of cortical microvasculature with optical coherence tomography // Opt. Lett. 2010. Vol. 35, № 1. P. 43–45.

Краткое содержание:
(downloads: 108)