ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА

УДК 539.194; 539.196.3

МОЛЕКУЛЯРНОЕ МОДЕЛИРОВАНИЕ И КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ 4,4'-ХЛОРБЕНЗОФЕНОНА

Л. М. Бабков¹, В. А. Бойков¹, Н. А. Давыдова², К. Е. Успенский³

 ¹Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
E-mail: babkov@sgu.ru
²Институт физики НАН Украины, Киев
E-mail: davydova@iop.kiev.ua
³Российская академия народного хозяйства и государственной службы при Президенте РФ, Поволжский институт управления имени П. А. Столыпина, Саратов

При комнатной температуре измерены спектры инфракрасного поглощения и комбинационного рассеяния 4,4'-дихлорбензофенона в диапазонах 400–3200 и 0–3200 см⁻¹ соответственно. Методом теории функционала плотности B3LYP/6-31+g(d) и 6-31-g(d) проведено моделирование структуры и колебательных спектров молекулы: рассчитаны минимальная энергия, геометрическая структура, составляющие дипольного момента и тензора поляризуемости, силовые постоянные и частоты нормальных колебаний в гармоническом приближении, их интенсивности в ИК спектре и активности в спектре КР. Дана интерпретация измеренных спектров.

Ключевые слова: 4,4'-дихлорбензофенон, моделирование, метод теории функционала плотности, ИК спектр, спектр КР, нормальные колебания, частота, интенсивность, КР активность.

Molecular Modeling and Vibrational Spectra of 4,4,'-clorobenzophenone

L. M. Babkov, V. A. Boykov, N. A. Davydova, K. E. Uspenskiy

Vibrational infrared and Raman spectra of 4,4'-chlorobenzophenone have been measured at room temperature in the ranges 400–3200 and 0–3200 cm⁻¹ respectively. Modeling of structure and vibrational spectra has been performed by a density functional theory method B3LYP/6-31+g(d) and 6-31-g(d). Energy, structure, components of the dipole moment and polarizability tensor, force constants, frequencies of normal modes in harmonic approximation and their intensities in the IR and Raman activity have been calculated. Interpretation of measured spectra is given.

Key words: 4,4'-chlorobenzophenone, molecular modeling, density functional theory method, IR spectrum, Raman spectrum, normal modes, frequency, intensity, Raman activity.

DOI: 10.18500/1817-3020-2016-16-2-97-102

Введение

В статье обсуждены результаты исследования структуры 4,4'-дихлорбензофенона

(4,4'-ХБФ) и его колебательных спектров: инфракрасного (ИКС) спектра поглощения и спектра комбинационного рассеяния (СКР). Целью исследования явилось установление связи «спектр – структура – свойства» в 4,4'-ХБФ. Исследования такого рода актуальны для фундаментальной науки, в частности квантовой физики молекулярных систем и конденсированного состояния и для приложений. Проведённое исследование носит комплексный характер: оно включает в себя эксперимент и теорию. Роль теории в подобных исследованиях сильно возросла благодаря успехам, достигнутым в развитии квантово-химических методов расчёта структуры молекул и кристаллов [1-3]. Возросшая точность, с которой рассчитываются молекулярные параметры – минимальная энергия, геометрия, дипольные моменты, тензор поляризуемости, силовые постоянные-позволяет с успехом использовать их в теоретической спектроскопии.

4,4'-ХБФ – соединение из числа галогензамещённых бензофенона (БФ), большинство из которых, в частности, бромзамещённые, образуют стеклофазу. Наличие стеклофазы определило первоначальный интерес к галогензамещённым БФ. Стеклофаза бромзамещённых БФ стала предметом исследования в [4]. 4,4'-ХБФ, как выяснилось, в отличие от бромзамещённых БФ, стеклофазы не образует, но обладает полиморфизмом. У него имеются две соразмерные кристаллические модификации (высокотемпературная и низкотемпературная) с моноклинными кристаллическими решётками, в промежутке между которыми реализуется не-

соразмерная фаза [5] в интервалах температур 184–165 К при охлаждении образца и 192– 206 К – при нагревании. Исследование полиморфизма 4,4'-ХБФ, проявляющегося в структуре и колебательных спектрах, представляет интерес. Авторами статьи реализован первый его этап, связанный с интерпретацией колебательных спектров высокотемпературной модификации 4,4'-ХБФ, измеренных при нормальных условиях, на основе результатов моделирования структуры и колебательных спектров 4,4'-ХБФ методом теории функционала плотности (ТФП). Результаты, полученные на этом этапе, обсуждаются в статье.

Эксперимент и моделирование

ИК спектры 4,4'-ХБФ измерены при комнатной температуре на Фурье-спектрометре IFC-88 фирмы Брукер с разрешением 2 см⁻¹ в спектральной области 500–3500 см⁻¹. Программное обеспечение эксперимента осуществлялось с помощью комплекса OPUS. Образцы располагались между пластинами *CsI*, прозрачными в ИК области.

Спектры КР регистрировались на спектрометре Jobin-V von Ramanor U-1000 (двойной монохроматор) в диапазоне 10-3500 см⁻¹. Спектральная ширина щели 2 см⁻¹. Возбуждение осуществлялось линией 514 нм Ar лазера с мощностью 100 мВт. Образец находился в стеклянном капилляре, закреплённом в криостате.

Моделирование структуры ИК спектра 4,4'-ХБФ проводилось на основе метода ТФП [1-3], реализованного в стандартном лицензионном пакете программ GAUSSIAN'03, с использованием функционала B3LYP и базисов 6-31+g(d), 6-31-g(d). Минимизирована энергия, рассчитаны значения геометрических параметров, силовых постоянных в гармоническом приближении, дипольных моментов и компонент тензора поляризуемости молекулы. Анализ численных значений указанных параметров, рассчитанных с использованием обоих базисов, указывает на их соответствие общепринятым в структурной химии и позволяет считать их достоверными. Полученные результаты не выявили преимуществ одного базиса перед другим. Рассчитанные параметры использованы в моделировании ИК спектра и спектра КР молекулы 4,4'-ХБФ. Результаты моделирования колебательных спектров оказались ожидаемыми и удовлетворительными. С помощью процедуры масштабирования рассчитанных частот, широко используемой в мировой практике (см., например, статьи [6, 7] и [8-16]) минимизированы расхождения между измеренными и рассчитанными частотами, обусловленные ограниченностью гармонического приближения. Использование масштабирования признано целесообразным в мировом научном сообществе для интерпретации спектров соединений гомологического ряда какого-либо соединения или ряда его замещённых. В статье авторами проведено масштабирование для повышения эффективности анализа колебательных спектров и их интерпретации. Ангармонизм сильнее влияет на частоты колебаний лёгких атомов, слабее - тяжёлых. Процедура масштабирования учитывает это: масштабирующие множители для разных диапазонов колебательного спектра молекулы различаются. В диапазоне 0-1000 см⁻¹, в котором проявляются валентные и деформационные колебания бензольных колец и связей C-Cl, теоретические спектры сдвинуты относительно экспериментальных в высокочастотную сторону на 1.5%, и масштабирующий множитель равен 0.985. В диапазоне 1000-1750см⁻¹ смещение теоретического спектра достигает 2.5-3%, и масштабирующий множитель равен 0.975. В диапазоне 3000-3100 см⁻¹ рассчитанные частоты валентных колебаний связей С-Н превышают измеренные на 5-7%, т.е. на 150-200 см⁻¹, и масштабирующий множитель для этой области равен 0.95. Масштабирование рассчитанных частот позволило устранить обусловленную гармоническим приближением систематическую ошибку, неявно учтя таким образом механический ангармонизм.

Обсуждение результатов

Структура 4,4'-ХБФ. Строение изолированной молекулы 4,4'-ХБФ приведено на рис. 1. Значения рассчитанных длин связей и углов приведены в табл. 1. Их сравнение с соответствующими параметрами в молекулах БФ и его бромзамещенных [4] показало, что замещение в молекуле БФ атомов водорода в положениях 4 и 4' не приводит к существенным изменениям геометрии карбонильной группы и фенильных колец. Длина связи С=О составляет 1.22 Å. Она не изменяется при переходе БФ – 4-бромбензофенон – 4,4'-ХБФ. Длина связи C-Cl составляет 1.75 Å, что на 0.15 Å меньше длины связи C-Br в 4-бромбензофеноне.

Рис. 1. Строение молекулы 4,4'-ХБФ

Таблииа 1

Связь	Длина, Å	Связь	Длина, Å
O ₁ -C ₂	1.22		
C ₂ -C ₃	1.49	C ₃ -C ₁₄	1.40
C ₃ -C ₄	1.40	C ₁₄ -C ₁₅	1.39
C ₄ -C ₅	1.39	C ₁₅ -C ₁₆	1.39
C ₅ -C ₆	1.39	C ₁₆ -C ₁₇	1.39
C ₆ -C ₇	1.39	C ₁₇ -C ₁₈	1.39
C ₇ -C ₈	1.39	C ₁₄ -H ₁₉	1.08
C ₄ -H ₉	1.08	C ₁₅ -H ₂₀	1.08
C ₅ -H ₁₀	1.08	C ₁₇ -H ₂₁	1.08
C ₆ -H ₁₁	1.08	C ₁₈ -H ₂₂	1.08
C ₈ -H ₁₂	1.08	C ₆ -Cl ₂₄	1.75
C ₂ -C ₁₃	1.49	C ₁₆ -Cl ₂₃	1.75
		10 15	
Угол	град.	Угол	град.
O ₁ -C ₂ -C ₃	119	O ₁ -C ₂ -C ₁₃	119
C ₂ -C ₃ -C ₄	118	C ₂ -C ₁₃ -C ₁₄	118
C ₂ -C ₃ -C ₈	122	C ₂ -C ₁₃ -C ₁₈	122
C ₃ -C ₄ -H ₉	118	C ₁₃ -C ₁₄ -H ₁₉	118
C ₃ -C ₄ -C ₅	120	C ₁₃ -C ₁₄ -C ₁₅	120
C ₅ -C ₄ -H ₉	120	C ₁₅ -C ₁₄ -H ₁₉	120
C ₄ -C ₅ -H ₁₀	120	C ₁₄ -C ₁₅ -H ₂₀	120
C ₄ -C ₅ -C ₆	119	C ₁₄ -C ₁₅ -C ₁₆	119
C ₆ -C ₅ -H ₁₀	120	C ₁₆ -C ₁₅ -H ₂₀	120
C ₅ -C ₆ -Cl ₂₄	119	C ₁₅ -C ₁₆ -Cl ₂₃	119
C ₅ -C ₆ -C ₇	121	C ₁₅ -C ₁₆ -C ₁₇	121
C ₇ -C ₆ -Cl ₂₄	119	C ₁₇ -C ₁₆ -Cl ₂₃	119
C ₆ -C ₇ -C ₈	119	C ₁₆ -C ₁₇ -C ₁₈	119
C ₆ -C ₇ -H ₁₁	120	C ₁₆ -C ₁₇ -H ₂₁	120
C ₈ -C ₇ -H ₁₁	120	C ₁₈ -C ₁₇ -H ₂₁	120
C ₇ -C ₈ -H ₁₂	118	C ₁₇ -C ₁₈ -H ₂₂	118
C ₇ -C ₈ -C ₃	120	$C_{17}-C_{18}-C_{13}$	120
C ₃ -C ₈ -H ₁₂	120	C ₁₃ -C ₁₈ -H ₂₂	120
C ₈ -C ₃ -C ₄	118	$C_{18} - C_{13} - C_{14}$	118
		10 10 17	1

Геометрические параметры 4,4'-ХБФ

Колебательные спектры. Молекула 4,4'-ХБФ принадлежит к группе симметрии C_2 . Её 66 нормальных колебаний поровну делятся между двумя типами симметрии: $\Gamma_{vibr} = 33a + 33b$. В соответствии с правилами отбора по симметрии в ИК спектре и спектре КР молекулы разрешены колебания обоих типов. В табл. 2 приведены измеренные частоты ИКС и СКР и рассчитанные частоты нормальных колебаний 4,4'-ХБФ. Дано их отнесение по формам колебания.

Влияние замещения атомов водорода в положениях 4 и 4' на атомы хлора существенным образом сказывается на формах колебаний в низкочастотных областях спектра (ниже 500 см⁻¹), где проявляются плоские и неплоские деформационные колебания бензольных колец, неплоские деформационные колебания связей, соединяющих бензольные кольца. Основными по вкладу в формы нормальных колебаний являются смещения атомов $O_1, C_2, C_3, C_{13}, C_4, C_8, C_{14}, C_{18}$. При этом влияние смещений самих атомов хлора также существенно в нормальных колебаниях фенильных колец и соединяющей их группы атомов.

Влияние валентных колебаний Q(C-Cl) существенно сказывается на нормальных модах v_{15} , v_{16} , v_{18} , v_{20} , v_{25} , которым соответствуют интенсивные пики в области ниже 800 см⁻¹ измеренных спектров.

Замещение атома водорода на атом хлора сказывается на неплоских деформационных колебаниях бензольных колец χ ClCCH), соответствующих нормальным колебаниям v_{30} , v_{31} , v_{32} . В нормальные колебания v_{37} , v_{38} , v_{39} вносят вклад валентные колебания Q(C-Cl) наравне с деформационными β (CCH₁₀), β (CCH₁₁),

 β (CCH₂₀), β (CCH₂₁). В нормальные колебания, проявляющиеся в области средних частот (1100–1650 см⁻¹), основной вклад вносят плоские деформационные координаты $\beta_{R1(R2)}$ (CCH). Нормальной моде v_{45} соответствуют интенсивные пики 1295 см⁻¹ в ИК спектре, и 1288 см⁻¹ в спектре КР. Модам v_{56} , v_{57} соответствуют пики в области ниже 1750см⁻¹.

Таблица 2

Измеренные и г		астоти фундам		аний мологули.	<i>1 1</i> '-ХБФ
измеренные и ј	зассчитанные ч	астоты фундам	сніальных колсо	ании молскулы	4,4 -ΛDΨ

Nº	v КР эксп	v ИК эксп	V _{reop}	Форма колебания
15	465	468	463	$Q_{R-R1,R2}$ (C-Cl); $\gamma_{R1,R2}$ (CCC); $\chi_{R1,R2}$ (CCCC); $\chi_{R1,R2}$ (CCCH);
16	467	469	461	$Q_{R-R1,R2} (C-Cl); \gamma_{R1,R2} (OCC); \chi_{R1,R2} (CCCC); \chi_{R1,R2} (CCCH); \chi_{R1,R2} (CICCC)$
17	510	512	501	Q _{R-R1,R2} (C-Cl); χ (CCCC); χ (CCCH); χ (HCCC);
18	515	515	515	$Q_{R-R1,R2} (C-Cl); Q_{R-R1,R2} (C-C); \gamma(OCC); \chi_{R1,R2} (CCCC); \chi (CCCH);$
19	594	595	588	$Q_{R-R1,R2} (C-Cl); Q_{R-R1,R2} (C-C); \gamma(OCC)\gamma(CCC); \chi_{R1,R2} (CCCC); \chi (CCCH);$
20	638	640	620	$Q_{R-R1,R2}$ (C-Cl); $Q_{R-R1,R2}$ (C-C); γ(OCC) γ(CCC); $\chi_{R1,R2}$ (CCCC); χ (CCCH);
21	645	647	652	$\gamma(CCC); \gamma(CCH);$
22	680	677	679	χ (OCCC); $\chi_{R1,R2}$ (CCCC); $\chi_{R1,R2}$ (HCCC);
23	724	725	716	Q(C-Cl); γ(CCC); χ (OCCC);
24	731	735	730	χ O(CCC); χ _{R1,R2} (CCCC);
25	771	772	760	Q(C-Cl); $Q_{R-R1,R2}$ (C-C); γ (CCC); χ (CCCH ₁₂); χ (CCCH ₂₂);
26	772	773	773	$\chi (OCCC); \chi_{R1,R2} (CCCC); \chi_{R2} (CICCC); \chi (CCCH_9); \chi (CCC H_{19});$
27	841	845	830	$\chi_{R1,R2}$ (CCCH); $\chi_{R1,R2}$ (HCCCl);
28	845	849	841	$\chi_{R1,R2}$ (CCCH); $\chi_{R1,R2}$ (HCCCl); $\chi_{R1,R2}$ (OCCH);
29	848	851	849	χ _{R1,R2} (CCCH); χ _{R1,R2} (CICCH);
30	867	870	863	$\chi_{R1,R2}$ (CCCC); $\chi_{R1,R2}$ (CICCH); $\chi_{R1,R2}$ (CCCH);
31	940	943	928	$Q_{R-R2} (C-C); Q(C_3-C_8); Q(C_{13}-C_{18}); \gamma(CCC); \chi_{R1,R2} (HCCH); \chi_{R1,R2} (HCCCI);$
32	976	971	971	$\chi_{R1,R2}$ (CCCH); $\chi_{R1,R2}$ (HCCH); $\chi_{R1,R2}$ (HCCCl);
33	981	983	980	$\chi_{R1,R2}$ (CCCH); $\chi_{R1,R2}$ (HCCH);
34	989	983	987	$\chi_{R1,R2}$ (CCCH); $\chi_{R1,R2}$ (HCCH); $\chi_{R1,R2}$ (HCCCl);
35	990	986	1001	$\chi_{R1,R2}$ (CCCH); $\chi_{R1,R2}$ (HCCH);
36	1031	1032	1021	$Q(C_3-C_8); Q(C_{13}-C_{18}); Q(C-C1); \gamma(CCC);$
37	1032	1034	1041	$Q(C_3-C_8); (C_{13}-C_{18}); Q(C-CI); \gamma (CCC);$
38	1105	1109	1110	$Q(C_{5}-C_{6}); Q(C_{15}-C_{16}); Q(C-Cl); \beta(CCH_{10}); \beta(CCH_{11}); \beta(CCH_{20}); \beta(CCH_{21});$
39	1106	1110	1115	Q(C ₆ -C ₇); Q(C ₁₆ -C ₁₇); Q(C-Cl); β(CCH ₁₀); β(CCH ₁₁); β(CCH ₂₀);
40	1137	1139	1132	$\begin{array}{c} Q(C_4\text{-}C_5); Q(C_7\text{-}C_8); Q(C_{14}\text{-}C_{15}); Q(C_{17}\text{-}C_{18}); \beta(CCH_{10}); \beta(CCH_{11}); \beta(CCH_{20}); \beta(CCH_{21}); \\ \beta(CCH_{12}); \beta(CCH_{22}); \end{array}$
41	1140	1143	1149	$\begin{array}{l} Q(C_4\text{-}C_5); \ Q\ (C_7\text{-}C_8); \ Q(C_{14}\text{-}C_{15}); \ Q\ (C_{17}\text{-}C_{18}); \ \beta(CCH_{10}); \ \beta(CCH_{11}); \ \beta(CCH_{20}); \ \beta(CCH_{21}); \\ \beta(CCH_{12}); \ \beta(CCH_{22}); \end{array}$
42	1171	1172	1167	$Q(C-C); Q(C_{3}-C_{4}); Q(C_{13}-C_{18}); \beta(CCH_{8}); \beta(CCH_{12}); \beta(CCH_{22}); \beta(CCH_{18});$
43	1208	1209	1203	$Q(C_4-C_5); Q(C_{14}-C_{15}); \beta(CCH_9); \beta(CCH_{12}); \beta(CCH_{22}); \beta(CCH_{19});$
44	1213	1216	1212	$Q(C_4-C_5); Q(C_{14}-C_{15}); \beta(CCH_9); \beta(CCH_{11}); \beta(CCH_{12}); \beta(CCH_{22}); \beta(CCH_{21}); \beta(CCH_{19});$
45	1295	1299	1288	$Q(C-C); Q(C_{3}-C_{4}); Q(C_{13}-C_{14}); \gamma(OCC); \beta(CCH_{9}); \beta(CCH_{10}); \beta(CCH_{11}); \beta(CCH_{19}); \beta(CH_{19}); \beta(CH_{19}$

Окончание	табл.	2
-----------	-------	---

Nº	v КР эксп	v ИК эксп	V _{reop}	Форма колебания
46	1332	1333	1310	$\begin{array}{c} Q(C_5\text{-}C_6); \ Q(C_{15}\text{-}C_{16}); \ Q(C_6\text{-}C_7); \ \beta(CCH_9); \ \beta(CCH_{10}); \ \beta(CCH_{11}); \ \beta(CCH_{12}); \ \beta(CCH_{19}); \\ \beta(CCH_{20}); \ \beta(CCH_{21}); \ \beta(CCH_{22}); \end{array}$
47	1333	1335	1328	$\begin{array}{c} Q(C_5\text{-}C_6); Q(C_{15}\text{-}C_{16}); Q(C_6\text{-}C_7); \beta(CCH_9); \beta(CCH_{10}); \beta(CCH_{11}); \beta(CCH_{12}); \beta(CCH_{19}); \\ \beta(CCH_{20}); \beta(CCH_{21}); \beta(CCH_{22}); \beta(CCH_{23}); \end{array}$
48	1342	1346	1340	$Q(C-C); \beta_{R1,R2} (CCH)$
49	1343	1346	1341	Q(C-C); γ(CCC); β _{R1,R2} (CCH)
50	1436	1442	1421	$Q(C_4-C_5); Q(C_7-C_8); Q(C_{14}-C_{15}); \gamma(CCC); \beta_{R1,R2} (CCH)\gamma(CCC1);$
51	1437	1442	1437	$Q(C_4-C_5); Q(C_7-C_8); Q(C_{14}-C_{15}); Q(C_{17}-C_{18}); \beta_{R1,R2} (CCH)\gamma(CCCI);$
52	1526	1531	1503	$Q(C-C); \beta_{R1,R2} (CCH)$
53	1530	1535	1523	Q(C-H); Q(C-C); β _{R1,R2} (CCH)
54	1609	1617	1607	Q(O=C); Q(C-C); β _{R1,R2} (CCH);
55	1610	1618	1623	Q(C-H); Q(C-C); β _{R1,R2} (CCH);
56	1636	1645	1639	Q(C-H); Q(C-C); β _{R1,R2} (CCH);
57	1638	1646	1631	Q(C-H); Q(C-C); β _{R1,R2} (CCH);
58	1651	1650	1701	$Q(O=C); Q(C-C); \chi_{R1-R-R2}(CCCC)$
59	3045	3045	3048	$q(C_4-H); q(C_5-H); q(C_{14}-H); q(C_{15}-H);$
60	3048	3048	3054	$q(C_4-H); q(C_5-H); q(C_{14}-H); q(C_{15}-H);$
61	3059	3059	3063	$q(C_7-H); q(C_8-H); q(C_{17}-H); q(C_{18}-H);$
62	3067	3067	3064	$q(C_7-H); q(C_8-H); q(C_{17}-H); q(C_{18}-H);$
63	3073	3073	3068	$q(C_4-H);q(C_5-H);q(C_{14}-H);q(C_{15}-H);$
64	3075	3075	3077	$q(C_4-H); q(C_5-H); q(C_{14}-H); q(C_{15}-H);$
65	3087	3089	3098	$q(C_7-H); q(C_8-H); q(C_{17}-H); q(C_{18}-H);$
66	3103	3103	3123	q(C ₇ -H); q(C ₈ -H); q(C ₁₇ -H); q(C ₁₈ -H);

Теоретическая и математическая физика

Рис. 3. Спектры КР, 4,4'-ХБФ: 1 – теория, 2 – эксперимент

Заключение

Построена структурно-динамическая модель молекулы 4,4'-ХБФ методом ТФП с использованием функционала B3LYP и базисов 6-31+G(d) и 6-31-G(d). Результаты квантово-химических расчётов не выявили преимуществ одного базиса перед другим.

Оценено влияние замещения атома водорода фенильного кольца атомом хлора на геометрию молекулы, её динамику и колебательные спектры.

Установлен значительный вклад смещений атома хлора в большинство нормальных колебаний молекулы.

Дана интерпретация спектров ИК поглощения и КР, измеренных при комнатной температуре.

Список литературы

- Кон В. Электронная структура вещества волновые функции и функционалы плотности // УФН. 2002. Т. 172, № 3. С. 336–348.
- Попл Дж. Квантово-химические модели // УФН. 2002. Т. 172, № 3. С. 349–356.
- Frisch M. J., Trucks G. W., Schlegel H. B. et al. Gaussian 03. Revision B.03 / Gaussian Inc. Pittsburgh, 2003. 302 p.
- Babkov L. M., Baran J., Davydova N. A., Drozd D., Pyshkin O. S., Uspenskiy K. E. Influence of the bromo group on the vibrational spectra and macroscopic properties of benzophenone derivatives // J. Mol. Struct. 2008. Vol. 887. P. 87–91.
- Mitkevich V. V., Lirtsman V. G., Strzhemechny M. A., Avdeenko A. A., Eremenko V. V. Investigation of the structural phase transitions near 190 K in 4,4'-dichlorobenzophenone // Acta Cryst. 1995. Vol. B 55. P. 799–806.
- 6. Yoshida H., Ehara A., Matsuura H. Density functional vibrational analysis using wavenumber-linear scale factors // Chem. Phys. Lett. 2000. Vol. 325, № 4. P. 477–483.
- 7. Yoshida H., Takeda K., Okamura J., Ehara A., Matsuura H. A new approach to vibrational analysis of

large molecules by density functional theory : wavenumber-linear scaling method // J. Phys.Chem. A. 2002. Vol. 106, № 14. P. 3580–3586.

- Березин К. В., Нечаев В. В., Кривохижина Т. В. Применение метода линейного масштабирования частот в расчетах нормальных колебаний многоатомных молекул // Оптика и спектр. 2003. Т. 94, № 3. С. 398–401.
- Бабков Л. М., Давыдова Н. А., Успенский К. Е. Водородная связь и структуры 2-, 3- и 4-бифенилметанолов // Журн. структурной химии. 2008. Т. 49, № 3. С. 419–426.
- Бабков Л. М., Королевич М. В., Моисейкина Е. А. Расчет структуры и ИК спектра молекулы метил-β-D-глюкопиранозида методом функционала плотности // Журн. прикл. спектроскопии. 2010. Т. 77, № 2. С.179–187.
- Бабков Л. М., Королевич М. В., Моисейкина Е. А. Расчет структуры и ИК спектра метил-В-D-глюкопиранозида методом функционала плотности с учетом водородной связи // Журн. прикл. спектроскопии. 2011. Т. 78, № 2. С. 223 –228.
- Бабков Л.М., Королевич М.В., Моисейкина Е. А. Водородная связь, ИК спектры и строение метил-β-Dглюкопиранозида // Журн. структурной химии. 2012. Т.53, №1. С. 28–35.
- Бабков Л. М., Давыдова Н. А., Моисейкина Е. А. ИК спектры циклогексанола и структурно-динамическая модель молекулы // Изв. Сарат. ун-та. Нов. сер. Сер. Физика. 2012. Т. 12, вып. 1. С. 54–62.
- 14. Бабков Л. М., Давыдова Н. А., Моисейкина Е. А. Водородная связь и её влияние на структуру и колебательнае спектры циклогексанола // Изв. Сарат. ун-та. Нов. сер. Сер. Физика. 2013. Т. 13, вып. 1. С. 13–26.
- Бабков Л. М., Ивлиева И. В., Королевич М. В. Расчёт структуры и ИК спектра 2,3-ди-О-нитро-метил-β-D-глюкопиранозида методом функционала плотности // Журн. прикл. спектроскопии. 2015. Т. 82, № 3. С. 331–340.
- 16. Бабков Л. М., Давыдова Н. А., Ивлиева И. В. ИК спектры салола и их интерпретация на основе молекулярного моделирования // Изв. Сарат. ун-та. Нов. сер. Сер. Физика. 2015. Т. 15, вып. 4. С. 44–54.