Для цитирования:
Слепченков М. М., Мурашко Д. Т., Куксин А. В., Рязанов Р. М., Лебедев Е. А., Шаман Ю. П., Кицюк Е. П., Герасименко А. Ю., Глухова О. Е. Электропроводные свойства интерфейсов графен–нанотрубный гибрид/оксид алюминия // Известия Саратовского университета. Новая серия. Серия: Физика. 2025. Т. 25, вып. 3. С. 356-368. DOI: 10.18500/1817-3020-2025-25-3-356-368, EDN: TXLUUP
Электропроводные свойства интерфейсов графен–нанотрубный гибрид/оксид алюминия
Углеродные наноструктуры/оксиды металлов в качестве интерфейсов становятся одними из ключевых компонентов наноэлектронных устройств, в том числе туннельных полевых транзисторов. Среди углеродных наноматериалов особое внимание уделяется графену, повышение структурной стабильности и управление электропроводностью которого представляет актуальную научную задачу. Одним из решений указанной проблемы, имеющим экспериментальную апробацию, является сочетание графена с углеродными нанотрубками в составе гибридной наноструктуры. В данной работе впервые экспериментально получены образцы интерфейса 2D/0D в виде гибридной пленки из восстановленного оксида графена (ВОГ) и одностенных углеродных нанотрубок (ОУНТ) с осажденными наночастицами оксида алюминия Al2O3. Синтезированы образцы с толщиной слоя наночастиц Al2O3 5 нм и 20 нм. Благодаря импульсному лазерному воздействию с плотностью энергии 0.24 Дж/см2 (мощность лазерной обработки 70 мВт) был достигнут эффект связывания наночастиц Al2O3 c поверхностью наноструктур ВОГ/ОУНТ, а также эффект формирования наноструктур ОУНТ, ориентированных под углом к кремниевой подложке. Для синтезированных образцов проведены измерения электропроводности при температурах –50, –10, +20, +60, +140, +200°C. Выявлено, что с ростом температуры электропроводность образца с толщиной слоя наночастиц Al2O3 5 нм увеличивается в 2.5 раза, а образца с толщиной 20 нм – в 4.2 раза. При этом, для образца с толщиной слоя наночастиц Al2O3 20 нм при всех температурах характерны более высокие значения электропроводности. На основе полученных результатов можно рекомендовать синтезированные образцы интерфейса ВОГ/ОУНТ/Al2O3 к применению в устройствах наноэлектроники.
- Chaudhry M. A., Hussain R., Butt F. K., eds. Metal Oxide-Carbon Hybrid Materials: Synthesis, Properties and Applications. Elsevier Metal Oxides Series. Amsterdam, Elsevier, 2022. 588 p.
- Daneshvar F., Chen H., Noh K., Sue H. J. Critical challenges and advances in the carbon nanotube–metal interface for next-generation electronic. Nanoscale Adv., 2021, vol. 3, iss. 4, pp. 942–962. https://doi.org/10.1039/D0NA00822B
- Mishra H., Panda J., Ramu M., Sarkar T., Dayen J. F., Belotcerkovtceva D., Kamalakar M. V. Experimental advances in charge and spin transport in chemical vapor deposited graphene. J. Phys. Mater., 2021, vol. 4, art. 042007. https://doi.org/10.1088/2515-7639/ac1247
- Maciel R. P., Eriksson O., Kvashnin Y. O., Thonig D., Belotcerkovtceva D., Kamalakar M. V., Ong C. S. Resistive switching in graphene: A theoretical case study on the alumina-graphene interface. Phys. Rev. Research, 2023, vol. 5, art. 043147. https://doi.org/10.1103/PhysRevResearch.5.043147
- Martinez-Martinez R., Islam M. M., Krishnaprasad A., Roy T. Graphene-oxide interface for optoelectronic synapse application. Sci. Rep., 2022, vol. 12, iss. 1, art. 5880. https://doi.org/10.1038/s41598-022-09873-8
- Belotcerkovtceva D., Maciel R. P., Berggren E., Maddu R., Sarkar T., Kvashnin Y. O., Thonig D., Lindblad A., Eriksson O., Kamalakar M. V. Insights and implications of intricate surface charge transfer and sp3-defects in graphene/metal oxide interfaces. ACS Appl. Mater. Interfaces, 2022, vol. 14, pp. 36209−36216. https://doi.org/10.1021/acsami.2c06626
- Alnuaimi A., Almansouri I., Saadat I., Nayfeh A. Interface engineering of graphene–silicon Schottky junction solar cells with an Al2O3 interfacial layer grown by atomic layer deposition. RSC Adv., 2018, vol. 8, pp. 10593−10597. https://doi.org/10.1039/c7ra13443f
- Gusmão M. S., Ghosh A., Frota H. O. Electronic transport properties of graphene/Al2O3 (0001) interface. Curr. Appl. Phys., 2018, vol. 18, iss. 1, pp. 90−95. https://doi.org/10.1016/j.cap.2017.10.008
- Fisichella G., Schilirò E., Di Franco S., Fiorenza P., Lo Nigro R., Roccaforte F., Ravesi S., Giannazzo F. Interface electrical properties of Al2O3 thin films on graphene obtained by atomic layer deposition with an in situ seedlike layer. ACS Appl. Mater. Interfaces, 2017, vol. 9, iss. 8, pp. 7761−7771. https://doi.org/10.1021/acsami.6b15190
- Vu V. B., Bubendorff J. L., Mouafo L. D. N., Latil S., Zaarour A., Dayen J-F., Simon L., Dappe Y. J. Graphene/aluminum oxide interfaces for nanoelectronic devices. Electron. Struct., 2023, vol. 5, no. 4, art. 045005. https://doi.org/10.1088/2516-1075/acff9e
- Hu Y. Z., Li J., Luo L. L., Hu S. L., Shen H. H., Long X. G. Regulating interface interaction in alumina/graphene composites with nano alumina coating transition layers. RSC Adv., 2024, vol. 14, iss. 28, pp. 20020−20031. https://doi.org/10.1039/D4RA00356J
- Qin S. C., Liu Y. D., Jiang H. Z., Xu Y., Shi Y., Zhang R., Wang F. All-carbon hybrids for high-performance electronics, optoelectronics and energy storage. Sci. China. Inf. Sci., 2019, vol. 62, iss. 12, art. 220403. https://doi.org/10.1007/s11432-019-2676-x
- Li Y., Ai Q., Mao L., Guo J., Gong T., Lin Y., Wu G., Huang W., Zhang X. Hybrid strategy of graphene/carbon nanotube hierarchical networks for highly sensitive, flexible wearable strain sensors. Sci. Rep., 2021, vol. 11, iss. 1, art. 21006. https://doi.org/10.1038/s41598-021-00307-5
- Sheng J., Han Z., Jia G., Zhu S., Xu Y., Zhang X., Yao Y., Li Y. Covalently bonded graphene sheets on carbon nanotubes: Direct growth and outstanding properties. Adv. Funct. Mater., 2023, vol. 33, art. 230678. https://doi.org/10.1002/adfm.202306785
- Liu B., Sun J., Zhao J., Yun X. Hybrid graphene and carbon nanotube–reinforced composites: Polymer, metal, and ceramic matrices. Adv. Compos. Hybrid Mater., 2025, vol. 8, art. 1. https://doi.org/10.1007/s42114-024-01074-3
- Lan M., Jia X., Tian R., Feng L., Shao D., Song H. Advancing multifunctional thermal management with multistate graphene/CNTs conjugated hybrids. Carbon, 2024, vol. 219, art. 118850. https://doi.org/10.1016/j.carbon.2024.118850
- Hong Z., Zheng Z., Kong L., Zhao L., Liu S., Li W., Shi J. Welded carbon nanotube–graphene hybrids with tunable strain sensing behavior for wide-range bio-signal monitoring. Polymers, 2024, vol. 16, iss. 2, art. 238. https://doi.org/10.3390/polym16020238
- Li Z., Li Z. H., Zhang Y., Xu X., Cheng Y., Zhang Y., Zhao J., Wei N. Highly sensitive weaving sensor of hybrid graphene nanoribbons and carbon nanotubes for tnhanced pressure sensing function. ACS Sens., 2024, vol. 9, iss. 5, pp. 2499–2508. https://doi.org/10.1021/acssensors.4c00170
- Lee C., Wei X., Kysar J. W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, vol. 321, iss. 5887, pp. 385–388. https://doi.org/10.1126/science.1157996
- Lv R., Cruz-Silva E., Terrones M. Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene-Nanotube Hybrids and More. ACS Nano, 2014, vol. 8, iss. 5, pp. 4061–4069. https://doi.org/10.1021/nn502426c
- Tristán-López F., Morelos-Gómez A., Vega-Díaz S. M., García-Betancourt M. L., Perea-López N., Elías A. L., Muramatsu H., Cruz-Silva R., Tsuruoka, S., Kim Y. A., Hayahsi T., Kaneko K., Endo M., Terrones M. Large area films of alternating graphene-carbon nanotube layers processed in water. ACS Nano, 2013, vol. 7, iss. 12, pp. 10788–10798. https://doi.org/10.1021/nn404022m
- Du W., Ahmed Z., Wang Q., Yu C., Feng Z., Li G., Zhang M., Zhou C., Senegor R., Yang C. Y. Structures, properties, and applications of CNT-graphene heterostructures. 2D Mater., 2019, vol. 6, iss. 4, art. 042005. https://doi.org/10.1088/2053-1583/ab41d3
- Jiang Y., Song S., Mi M., Yu L., Xu L., Jiang P., Wang Y. Improved Electrical and Thermal Conductivities of Graphene–Carbon Nanotube Composite Film as an Advanced Thermal Interface Material. Energies, 2023, vol. 16, iss. 3, pp. 1378. https://doi.org/10.3390/en16031378
- Al-Saleh M. H. Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synthetic Metals, 2015, vol. 209, pp. 41–46. https://doi.org/10.1016/j.synthmet.2015.06.023
- Kholmanov I. N., Magnuson C. W., Piner R., Kim J. Y., Aliev A. E., Tan C., Kim T. Y., Zakhidov A. A., Sberveglieri G., Baughman R. H., Ruoff R. S. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv. Mater., 2015, vol. 27, iss. 19, pp. 3053–3059. https://doi.org/10.1002/adma.201500785
- Slepchenkov M. M., Barkov P. V., Glukhova O. E. Features of the atomic structure and electronic properties of hybrid films formed by single-walled carbon nanotubes and bilayer graphene. Izvestiya of Saratov University. Physics, 2021, vol. 21, iss. 4, pp. 302–314 (in Russian). https://doi.org/10.18500/1817-3020-2021-21-4-302-314
- Gerasimenko A. Y., Kuksin A. V., Shaman Y. P., Kitsyuk E. P., Fedorova Y. O., Sysa A. V., Pavlov A. A., Glukhova O. E. Electrically conductive networks from hybrids of carbon nanotubes and graphene created by laser radiation. Nanomaterials, 2021, vol. 11, iss. 8, art. 1875. https://doi.org/10.3390/nano11081875
- Etesami M., Nguyen M. T., Yonezawa T., Tuantranont A., Somwangthanaroj A., Kheawhom S. 3D carbon nanotubes-graphene hybrids for energy conversion and storage applications. Chem. Eng. J., 2022, vol. 446, pt. 3, art. 137190. https://doi.org/10.1016/j.cej.2022.137190
- Pyo S., Eun Y., Sim J., Kim K., Choi J. Carbon nanotube-graphene hybrids for soft electronics, sensors, and actuators. Micro Nano Syst. Lett., 2022, vol. 10, art. 9. https://doi.org/10.1186/s40486-022-00151-w
- Zhang Y., Li Y., Sun J., You Q., Li K., Zhu M., Deng T. A micro broadband photodetector based on single wall carbon nanotubes–graphene heterojunction. J. Light. Technol., 2022, vol. 40, iss. 1, pp. 149–155. https://doi.org/10.1109/JLT.2021.3120184
- Zhang Y., Li Y., You Q., Sun J., Li K., Hong H., Kong L., Zhu M., Deng T., Liu Z. A broadband 3D microtubular photodetector based on a single wall carbon nanotube-graphene heterojunction. Nanoscale, 2023, vol. 15, iss. 3, pp. 1402–1411. https://doi.org/10.1039/D2NR05819G
- Gerasimenko A. Y., Kuksin A. V., Shaman Y. P., Kitsyuk E. P., Fedorova Y. O., Murashko D. T., Shamanaev A. A., Eganova E. M., Sysa A. V., Savelyev M. S., Telyshev D. V., Pavlov A. A., Glukhova O. E. Hybrid carbon nanotubes–graphene nanostructures: Modeling, formation, characterization. Nanomaterials, 2022, vol. 12, iss. 16, art. 2812. https://doi.org/10.3390/nano12162812
- Wang G., Liu L., Zhang Z. Interface mechanics in carbon nanomaterials-based nanocomposites. Composites A: Appl. Sci. Manuf., 2021, vol. 141, iss. 6414, art. 106212. https://doi.org/10.1016/j.compositesa.2020.106212
- Wang Y., Zhou W., Cao K., Hu X., Gao L., Lu Y. Architectured graphene and its composites: Manufacturing and structural applications. Compositesa A: Appl. Sci. Manuf., 2021, vol. 140, art. 106177. https://doi.org/10.1016/j.compositesa.2020.106177
- Xie Y., Kocaefe D., Kocaefe Y., Cheng J., Liu W. The effect of novel synthetic methods and parameters control on morphology of nano-alumina particles. Nanoscale Res. Lett., 2016, vol. 11, iss. 1, art. 259. https://doi.org/10.1186/s11671-016-1472-z
- Nakamiya T., Ueda T., Ikegami T., Mitsugi F., Ebihara K., Sonoda Y., Iwasaki Y., Tsuda R. Effect of a pulsed Nd: YAG laser irradiation on multi-walled carbon nanotubes film. Thin Solid Films, 2009, vol. 517, iss. 14, pp. 3854–3858. https://doi.org/10.1016/j.tsf.2009.01.097
- Zhang X., Yang L., Liu H. High-temperature conduction behavior of carbon nanotube fiber from 25°C to 1100°C. Appl. Phys. Lett., 2018, vol. 112, iss. 16, art. 164103. https://doi.org/10.1063/1.5026889
- 369 просмотров