Образец для цитирования:

Бабков Л. М., Давыдова Н. А., Моисейкина Е. А. ИК СПЕКТРЫ ЦИКЛОГЕКСАНОЛА И СТРУКТУРНО-ДИНАМИЧЕСКАЯ МОДЕЛЬ МОЛЕКУЛЫ // Известия Саратовского университета. Новая серия. Серия Физика. 2012. Т. 12, вып. 1. С. 54-?.


УДК: 
539.194; 539.196.3

ИК СПЕКТРЫ ЦИКЛОГЕКСАНОЛА И СТРУКТУРНО-ДИНАМИЧЕСКАЯ МОДЕЛЬ МОЛЕКУЛЫ

Аннотация

В диапазоне 600–3600 см–1 в широком интервале температур, в различных фазовых состояниях (пластическая фаза I, кристаллические фазы II и III) измерены ИК спектры циклогексанола. Методом теории функционала плотности (B3LYP) в базисе 6-31G(d) построены структурно-динамические модели конформеров мо- лекулы циклогексанола, различающихся ориентацией гидроксильной группы относительно углеродного кольца, и молекулы циклогексана: рассчитаны энергии, структуры, дипольные моменты, поляризуемости, частоты нормальных колебаний в гармоническом приближении и распределение интенсивностей в ИК их спектрах. Установлены спектрально структурные признаки конформеров. На основе сравнения теоретических и измеренных спектров дана их предварительная интерпретация с учетом многокомпонентности конформационного состава образца.

In wide temperature range IR spectra of cyclohexanol in different phase state (plastic phase, crystal phases II, III) have been measured in range 600–3600 см–1. Using density functional method B3LYP/6-31G structural – dynamic models of conformers of cyclohexanol molecule, which differs from each other by orientation of hydroxyl group relatively carbonic ring and cyclohexan, have been constructed. The energy, structure, dipole moments, polarizabilities and the frequencies of the normal modes in harmonic approximation and IR intensities have been calculated. Characteristic OH-group vibrations frequencies allowed to identify defined conformers realized in a sample have been determined. Interpretation of the measured spectra has been performed on the basis of the correspondence between theoretical and measured spectra. Conclusion about probable conformational structure has been performed.

Литература

1. Kelley K. K. Cyclohexanol and the third law of thermodynamics // J. Amer. Chem. Soc. 1929. Vol. 51. P. 1400–1406.

2. Neelakantan R. Raman spectra of cyclohexanol // Proc. Mathematical Sciences. 1963. Vol. 57. P. 94–102.

3. Green J. R., Griffi th W. T. Phase transformations in solid cyclohexanol // J. Phys. Chem. Solids. 1965. Vol. 26. P. 631–637.

4. Adachi K., Suga H., Seki S. Phase changes in crystalline and glassy-crystalline cyclohexanol // Bull. Chem. Soc. Jpn. 1968. Vol. 41. P. 1073–1087.

5. Wunderlich B. The detection of conformational disorder by thermal analysis // Pure & Appl. Chem. 1989. Vol. 61, № 8. P. 1347–1351.

6. Inscore F., Gift A., Maksymiuk P., Farquharson S. Characterization of chemical warfare G-agent hydrolysis products by surface – enhanced Raman spectroscopy // SPIE. 2004. Vol. 5585. P. 46–52.

7. Bonnet A., Chisholm J., Sam Motherwell W.D., Jones W. Hydrogen bonding preference of equatorial versus axial hydroxyl groups in pyran and cyclohexane rings in organic crystals // Cryst. Eng. Comm. 2005. Vol. 7, № 9. P. 71–75.

8. Ibberson R. M., Parsons S., Allan D. R., Bell T. Polymorphism in cyclohexanol // Acta Cryst. 2008. Vol. 64. Р. 573–582.

9. Элькин П. М., Шальнова Т. А., Гордеев И. И. Структурно-динамические модели конформеров циклогексанола // Прикаспийский журнал : управление и высокие технологии. 2010. Т. 11, № 3. С. 41–45.

10. Кон В. Электронная структура вещества – волновые функции и функционалы плотности // Успехи физ. наук. 2002. Т. 172, № 3. С. 336–348.

11. Попл Дж. А. Квантово-химические модели // Успехи физ. наук. 2002. Т. 172, № 3. С. 349–356.

12. Frisch J., Trucks G. W., Schlegel H. B. et al. Gaussian 03, Revision B.03 / Gaussian Inc. Pittsburgh, 2003. 302 p.

Полный текст в формате PDF (на русском языке):