Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Khitun A. G., Kozhanov A. E. Magnonic Logic Devices. Izvestiya of Saratov University. Physics , 2017, vol. 17, iss. 4, pp. 216-241. DOI: 10.18500/1817-3020-2017-17-4-216-241

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 200)
Language: 
Russian
UDC: 
548:537.611.44; 537.86; 621.38.01:53; 621.382.029.6

Magnonic Logic Devices

Autors: 
Khitun Aleksandr Georgievich, University of California, Riverside
Kozhanov Aleksandr Evgen'evich, Georgia State University
Abstract: 

Background and Objectives: There is a big impetus for the development of novel computational devices able to overcome the limits of the traditional transistor-based circuits. The utilization of phase in addition to amplitude is one of the promising approaches towards more functional computing architectures. In this work, we present an overview on magnonic logic devices utilizing spin waves for information transfer and processing. Materials and Methods: Magnonic logic devices combine input/output elements for spin wave generation/detection and an analog core. The core consists of magnetic waveguides serving as a spin wave buses. The data transmission and processing within the analog part is accomplished by the spin waves, where logic 0 and 1 are encoded into the phase of the propagating wave. The latter makes it possible to utilize spin wave interference for logic functionality. The proof-of-concept experiments were accomplished on micrometer scale ferromagnetic Ni81Fe19 and ferrite Y3Fe2(FeO4 ) 3 structures. Results: We present experimental data on spin wave propagation and interference in magnetic microstructures. We also present experimental data showing parallel read-out of magnetic bits using spin wave interference. Based on the obtained results, we consider possible logic circuits and architectures. Conclusion: Magnonic logic devices may offer a significant functional throughput enhancement over the conventional logic circuits by exploiting phase in additi on to amplitude. It is also possible to construct non-volatile magnonic logic circuits with built-in magnetic memory. Magnonic logic devices such as magnonic holographic memory are aimed not to replace but to complement the existing logic circuitry in special task data processing.

Reference: 

 1. International Technology Roadmap for Semiconductors. Semiconductor Industry Association, 2005. Available at: http://www.semiconductors.org/main/2005_international_technology_roadmap... (accessed 08 September 2017).

2. Schilz W. Spin-wave propagation in epitaxial YIG fi lms. Philips Research Reports, 1973, vol. 28, pp. 50–65. 

3. Silva T. J., Lee C. S., Crawford T. M., Rogers C. T. Inductive measurement of ultrafast magnetization dynamics in thin-fi lm Permalloy. Journal of Applied Physics, 1999, vol. 85, pp. 7849–7862. DOI: http://dx.doi.org/10.1063/1.370596

4. Covington M., Crawford T. M., Parker G. J. Timeresolved measurement of propagating spin waves in ferromagnetic thin fi lms. Physical Review Letters, 2002, vol. 89, no. 237202. 

5. Bailleul M., Ollig D., Fermon C., Demokritov S. Spin waves propagation and confi nement in conducting fi lms at the micrometer scale. Europhysics Letters, 2001, vol. 56, pp. 741–747. 

6. Nikitov S. A., Kalyabin D. V., Lisenkov I. V., Slavin A., Barabanenkov Yu. N., Osokin S. A., Sadovnikov A. V., Beginin E. N., Morozova M. A., Sharaevsky Yu. P., Filimonov Yu. A., Khivintsev Yu. V., Vysotsky S. L., Sakharov V. K., Pavlov E. S. Magnonics: a new research area in spintronics and spin wave electronics. Phys. Usp., 2015, vol. 58, p. 1099. DOI:  https://doi.org/10.3367/UFNe.0185.201510m.1099

7 . Khitun A., Wang K. L. Nano scale computational architectures with Spin Wave Bus. Superlattices and Microstructures, 2005, vol. 38, no. 9, pp. 184–200. 

8 . Eshaghian-Wilner M. M., Khitun A., Navab S., Wang K. A nano-scale reconfi gurable mesh with spin waves. CF 06 Proceedings of the 3rd conference on Computing frontiers, New York, NY, USA, 2006, pp. 65–70.

9 . Khitun A., Wang K. L. Nano logic circuits with spin wave bus. Journal of Nanoelectronics and Optoelectronics, 2006, vol. 1, pp.71–73. 

10 . Wang K. L., Khitun A., Flood A. H. Interconnects for nanoelectronics. Proceedings of the IEEE 2005 International Interconnect Technology Conference (IEEE Cat. No. 05TH8780), 2005, pp. 231–233. 

11. Wang K. L., Khitun A., Flood A. H. Interconnects for nanoelectronics. IEEE Xplore digital laboratory, 2005 (INSPEC Accession Number: 8531782). DOI:  https://doi.org/10.1109/IITC.2005.1499994

12 . Kozhanov A., Ouellette D., Rodwell M., Allen S. J., Jacob A. P., Lee D. W., Wang S. X. Dispersion and spin wave “tunneling” in nanostructured magnetostatic spin waveguides. Journal of Applied Physics, 2009, Apr. 1, vol. 105, no. 7, p. 311. 

13 . Kozhanov A., Ouellette D., Rodwell M., Allen S. J., Lee D. W., Wang S. X. Micro-structured ferromagnetic tubes for spin wave excitation. Journal of Applied Physics, 2011, Apr. 1, vol. 109, no. 7, p. 333. 

14 . Khitun A., Bao M., Wang K. L. Spin Wave Magnetic NanoFabric: A New Approach to Spin-based Logic Circuitry. IEEE Transactions on Magnetics, 2008, vol. 44, pp. 2141–2153. 

15 . Kaka S., Pufall M. R., Rippard W. H., Silva T. J., Russek S. E., Katine J. A. Mutual phase-locking of microwave spin torque nano-oscillators. Nature, 2005, Sep. 15, vol. 437(7057), pp. 389–392. 

16 . Cherepov S., Khalili-Amiri P., Alzate J. G., Wong K., Lewis M., Upadhyaya P., Nath J., Bao M., Bur A., Wu T., Carman G. P., Khitun A., Wang K. L. Electricfi eld-induced spin wave generation using multiferroic magnetoelectric cells. Applied Physics Letters, Feb. 2014, vol. 104, no. 8, p. 082403. 

17 . Kozhanov A., Ouellette D., Rodwell M., Lee D. W., Wang S. X., Allen S. J. Magnetostatic Spin-Wave Modes in Ferromagnetic Tube. IEEE Transactions on Magnetics, 2009, vol. 45, no. 10, pp. 4223–4225. 

18 . Berger L. Low-field magnetoresistance and domain drag in ferromagnets. Journal of Applied Physics, 1978, vol. 49, no. 3, p. 2156. DOI: http://dx.doi.org/10.1063/1.324716

19 . Slonczewski J. C. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 1996, vol. 159, no. 1–2, pp. L1–7. 

20. Demidov V. E., Urazhdin S., Demokritov S. O. Direct observation and mapping of spin waves emitted by spintorque nano-oscillators. Nature Materials, 2010, vol. 9, no. 12, pp. 984–988. 

21 . Tsoi M., Jansen A. G. M., Bass J., Chiang W. C., Tsoi V., Wyder P. Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature, 2000, vol. 406, pp. 46–48. 

22 . Eerenstein W., Mathur N. D., Scott J. F. Multiferroic and magnetoelectric materials. Nature, 2006, vol. 442, pp. 759–765. 

23 . Wang J., Neaton J. B., Zheng H., Nagarajan V., Ogale S. B., Liu B., Viehland D., Vaithyanathan V., Schlom D. G., Waghmare U. V., Spaldin N. A., Rabe K. M., Wuttig M., Ramesh R. Epitaxial BiFeO3 multiferroic thin fi lm heterostructures. Science, 2003, March 14, vol. 299, pp. 1719–1722. 

24 . Roy K., Bandyopadhyay S., Atulasimha J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Applied Physics Letters, 2011, Aug 8, vol. 99, p. 063108.

25 . Wu T., Bur A., Zhao P., Mohanchandra K. P., Wong K., Wang K. L., Lynch C. S., Carman G. P. Giant electricfield-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011) [Pb(Mg1/3Nb2/3)O3](1−x)–[PbTiO3]x heterostructure. Applied Physics Letters, 2011, vol. 98, p. 012504–7. 

26. Srinivasan G., Rasmussen E. T., Gallegos J., Srinivasan R., Bokhan Yu I., Laletin V. M. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Physical Review B (Condensed Matter and Materials Physics), 2001, vol. 64, p. 2144081. 

27. Van Den Boomgaard J., Terrell D. R., Born R. A. J., Giller H. An in situ grown eutectic magnetoelectric composite material. I. Composition and unidirectional solidification. Journal of Materials Science, 1974, vol. 9, pp. 1705–1709. 

28. Jungho R., Carazo V., Uchino K., Hyoun-Ee K. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Japanese Journal of Applied Physics, Part 1 (Regular Papers, Short Notes & Review Papers), 2001, vol. 40, pp. 4948–4951. 

29. Shabadi P., Khitun A., Narayanan P., Mingqiang B., Koren I., Wang K. L., Moritz C. A. Towards logic functions as the device. 2010 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH 2010), 2010, vol. 01, pp.11–16. 

30. Ch erepov S., Khalili Amiri P., Alzate J. G., Kin W., Lewis M., Upadhyaya P., Nath J., Mingqian B., Bur A., Tao W., Carman G. P., Khitun A., Wang K. L. Electricfi eld-induced spin wave generation using multiferroic magnetoelectric cells. Applied Physics Letters, 2014, Feb. 24, vol. 104, p. 082403. 

31. Khitun A., Wang K. Nano scale computational architectures with Spin Wave Bus. Superlattices & Microstructures, 2005, vol. 38, pp. 184–200. 

32. Kozhanov A., Ouellette D., Griffi th Z., Rodwell M., Jacob A. P., Lee D. W., Wang S. X., Allen S. J. Dispersion in magnetostatic CoTaZr spin waveguides. Applied Physics Letters, 2009, Jan. 5, vol. 94, p. 012505.

33. Damon R. W., Eshbach J. Magnetostatic modes of a ferromagnet slab. Journal of Physics and Chemistry of Solids, 1961, vol. 19, pp. 308–320. 

34. Khitun A., Nikonov D. E., Wang K. L. Magnetoelectric spin wave amplifi er for spin wave logic circuits. Journal of Applied Physics, 2009, vol. 106, p. 123909. 

35. Arias R., Mills D. Magnetostatic modes in ferromagnetic nanowires. Physical Review B, 2004, vol. 70, p. 094414. 

36. Arias R., Mills D. Magnetostatic modes in ferromagnetic nanowires. II. A method for cross sections with very large aspect ratio. Physical Review B, 2005, vol. 72, p. 104418. 

37. Adam J. D., Davis L. E., Dionne G. F., Schloemann E. F., Stitzer S. N. Ferrite devices and materials. IEEE Transactions on Microwave Theory and Techniques, 2002, vol. 50, pp. 721–737. 

38. Kuanr B., Harward I. R., Marvin D. L., Fal T., Camley R. E., Mills D. L., Celinski Z. High-frequency signal processing using ferromagnetic metals. IEEE Transactions on Magnetics, 2005, vol. 41, pp. 3538–3543. 

39. Almeida N., Mills D. Eddy currents and spin excitations in conducting ferromagnetic fi lms. Physical Review B, 1996, vol. 53, p. 12232. 

40. De midov V., Jersch J., Demokritov S., Rott K., Krzysteczko P., Reiss G. Transformation of propagating spin-wave modes in microscopic waveguides with variable width. Physical Review B, 2009, vol. 79, p. 054417. 

41. Vogt K., Schultheiss H., Jain S., Pearson J., Hoffmann A., Bader S., Hillebrands B. Spin waves turning a corner. Applied Physics Letters, 2012, vol. 101, p. 042410. 

42. Birt D. R., O’Gorman B., Tsoi M., Li X., Demidov V. E., Demokritov S. O. Diffraction of spin waves from a submicrometer-size defect in a microwaveguide. Applied Physics Letters, 2009, vol. 95, p. 122510. 

43. Kozhanov A., Ouellette D., Rodwell M., Allen S., Jacob A., Lee D., Wang S. Dispersion and spin wave “tunneling” in nanostructured magnetostatic spin waveguides. Journal of Applied Physics, 2009, vol. 105, p. 07D311. 

44. Schneider T., Serga A., Chumak A., Hillebrands B., Stamps R., Kostylev M. Spin-wave tunnelling through a mechanical gap. EPL (Europhysics Letters), 2010, vol. 90, p. 27003. 

45. Kozhanov A., Anferov A., Jacob A. P., Allen S. J. Spin Wave Scattering in Ferromagnetic Cross., 2012, arXiv preprint arXiv:1211.1259. 

46. Barman A., Kruglyak V., Hicken R., Rowe J., Kundrotaite A., Scott J., Rahman M. Imaging the dephasing of spin wave modes in a square thin fi lm magnetic element. Physical Review B, 2004, vol. 69, p. 174426. 

47. Demokritov S., Serga A., Andre A., Demidov V., Kostylev M., Hillebrands B., Slavin A. Tunneling of dipolar spin waves through a region of inhomogeneous magnetic fi eld. Physical Review Letters, 2004, vol. 93, p. 047201. 

48. Hansen U.-H., Gatzen M., Demidov V. E., Demokritov S. O. Resonant tunneling of spin-wave packets via quantized states in potential wells. Physical Review Letters, 2007, vol. 99, p. 127204. 

49. Kruglyak V., Demokritov S., Grundler D. Magnonics. Journal of Physics D: Applied Physics, 2010, vol. 43, p. 264001. 

50. Ko stylev M. P., Serga A. A., Schneider T., Leven B., Hillebrands B. Spin-wave logical gates. Applied Physics Letters, 2005, vol. 87, p. 153501. 

51. Schneider T., Serga A. A., Leven B., Hillebrands B., Stamps R. L., Kostylev M. P. Realization of spin-wave logic gates. Applied Physics Letters, 2008, vol. 92, p. 022505. 

52. Lee K.-S., Kim S.-K. Conceptual design of spin wave logic gates based on a Mach-Zehnder-type spin wave interferometer for universal logic functions. Journal of Applied Physics, 2008, vol. 104, p. 053909. 

53. Khitun A., Wang K. L. Non-Volatile Magnonic Logic Circuits Engineering. Journal of Applied Physics, 2011, vol. 110, p. 034306. 

54. Khitun A. Multi-frequency magnonic logic circuits for parallel data processing. Journal of Applied Physics, 2012, March 1, vol. 111, p. 054307. 

55. Krivorotov I. Spin Torque Oscillator Majority Logic. Western Institute of Nanoelectronics, Annual Review, 2012, vol. Abstract 3.1, pp. 3–7. 

56. Shabadi P., Khitun A., Narayanan P., Bao M., Koren I., Wang K. L., Moritz C. A. Towards Logic Functions as the Device. 2010 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH 2010), 2010, vol. 01, pp.11–16. 

57. Khit un A., Nikonov D. E., Wang K. L. Magnetoelectric spin wave amplifi er for spin wave logic circuits. J. Appl. Phys., 2009, vol. 106, p. 123909. 

58. Nana yakkara A. A. K., Allen S. J., Jacob A. P., Kozhanov A. Cross junction spin wave logic architecture. IEEE Transactions on Magnetics, 2014, vol. 50, no. 3402204. DOI:  https://doi.org/10.1109/TMAG.2014.2320632

59. Khitun A., Bao M., Lee J.-Y., Wang K. L., Lee D. W., Wang S. X., Roshchin I. V. Inductively Coupled Circuits with Spin Wave Bus for Information Processing. Journal of Nanoelectronics and Optoelectronics, 2008, vol. 3, pp. 24–34. 

60. Sh abadi P., Khitun A., Wong K., Amiri P. K., Wang K. L., Andras C. A. Spin wave functions nanofabric update. 2011 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH 2011), 2011, vol. 01, pp. 107–113. 

61. Khitun A. Magnonic Holographic Devices for Special Type Data Processing. Journal of Applied Physics, 2013, vol. 113, p. 164503. 

62. Lee S. H. Optical Information Processing Fundamentals. Berlin, Germany: Springer, 1981. 237 p. 

63. International Technology Roadmap for Semiconductors. Semiconductor Industry Association, 2011. Available at: http://www.semiconductors.org/main/2011_international_technology_roadmap... (accessed 08 September 2017). 

64. Krawczyk M., Puszkarski H. Magnonic crystal theory of the spin wave frequency gap in low-dopoed manganites. Journal of Applied Physics, 2006, vol. 100, p. 073905. 

65. Chua L. O., Yang L. Cellular neural networks: theory. IEEE Transactions on Circuits & Systems, 1988, vol. 35, pp. 1257–1272. 

66. Ambs P. Optical Computing: A 60-Year Adventure. Advances in Optical Technologies Volume (2010), 2010, vol. 2010, pp. 372652. 

67. Matsumoto T., Chua L. O., Yokohama T. Image thinning with a cellular neural network. IEEE Transactions on Circuits & Systems, 1990, vol. 37, pp. 638–640. 

68. Krieg K. R., Chua L. O., Yang L. Analog signal processing using cellular neural networks. IEEE International Symposium on Circuits and Systems (Cat. no. 90CH2868-8). New York, NY, USA, 1990, vol. 2, pp. 958–961. 

69. Roska T., Boros T., Thiran P., Chua L. O. Detecting simple motion using cellular neural networks. 1990 IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA-90 (Cat. no. 90TH0312-9). IEEE. New York, NY, USA, 1990, pp. 127–138. 

70. Ve netianer P. L., Werblin F., Roska T., Chua L. O. Analogic CNN algorithms for some image compression and restoration tasks. IEEE Transactions on Circuits & Systems I-Fundamental Theory & Applications, 1995, vol. 42, pp. 278–284. 

71. Khitun A., Mingqiang B., Wang K. L. Magnetic Cellular Nonlinear Network with Spin Wave Bus. 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010), 2010, no. 11207525. DOI:  https://doi.org/10.1109/CNNA.2010.5430306

72. Gabor D. A new microscopic principle. Nature, 1948, vol. 161, pp. 777–778. 

73. Hariharan P. Optical Holography: Principles, Techniques and Applications. Cambridge University Press, 1996. 406 p. 

74. Khitun A. Magnonic holographic devices for special type data processing. Journal of Applied Physics, 2013, Apr 28, vol. 113, p. 164503. 

75. Gertz F., Kozhanov A., Filimonov Y., Khitun A. Magnonic Holographic Memory. Magnetics, IEEE Transactions on, 2015, May 15, vol. 51, pp. 4002905–4002910. 

76. Serga A. A., Chumak A. V., Hillebrands B. YIG MAgnonics. Journal of Physics D: Applied Physics, 2010, vol. 43, p. 264002. 

77. Khitun A., Nikonov D. E., Bao M., Galatsis K., Wang K. L. Feasibility Study of Logic Circuits with Spin Wave Bus. Nanotechnology, 2007, vol. 18, iss. 46, p. 465202. DOI:  https://doi.org/10.1088/0957-4484/18/46/465202

78. Meo A. R. Majority Gate Networks. IEEE Transactions on Electronic Computers, 1966, vol. EC-15, pp. 606–618. 

79. Oya T., Asai T., Fukui T., Amemiya Y. A majority-logic device using an irreversible single-electron box. IEEE Transactions on Nanotechnology, 2003, vol. 2, pp. 15–22. 

80. Lo e K. F., Goto E. Analysis of fl ux input and output Josephson pair device. in IEEE Transactions on Magnetics, March 1985, vol. MAG-21, no. 2, pp. 884–887. 

81. Lent C. S., Tougaw P. D., Porod W., Bernstein G. H. Quantum cellular automata. Nanotechnology, 1993, vol. 4, pp. 49–57. 

82. Chung T. K., Keller S., Carman G. P. Electric-fi eldinduced Reversible Magnetic Single-domain Evolution in a Magnetoelectric Thin Film. Applied Physics Letters, 2009, vol. 94, no. 13, p. 132501. DO I: http://dx.doi.org/10.1063/1.3110047

83. I nternational Technology Roadmap for Semiconductors. Semiconductor Industry Association, 2007. Available at: https://www.semiconductors.org/main/2007_international_technology_roadma... (accessed 08 September 2017). 

84. Tsu-Jae King Liu, Kelin Kuhn. CMOS and Beyond. Logic Switches for Terascale Integrated Circuits. Cambridge University Press, 2015. 436 p.

Краткое содержание:
(downloads: 94)